B_s \to J/\psi \phi \text{ RUN-1 RESULTS AND STUDIES OF B^{\pm} MASS WITH RUN-2 DATA AT ATLAS}

A. B_s \to J/\psi \phi in RUN-1

In the Standard Model CP violation (CPV) is described by a phase in the CKM matrix. One of the manifestations of this complex phase is a phase shift between direct and mixing-mediated B_s decays producing a common final state. In the case of B_s \to J/\psi \phi this phase shift is predicted to be small: \phi_s = 0.0368 \pm 0.0018 rad. New physics can enhance \phi_s whilst satisfying all existing constraints.

A1. CP violation in B_s system

Different CP violating effects:
- CPV in decay: decay amplitudes of B-meson and anti-B-meson are different
- CPV in mixing: asymmetry in particle-antiparticle oscillations (CPV eigenstates \# mass eigenstates)

In the B_s \to J/\psi \phi channel the CPV occurs in interference of mixing and decay:

A2. Data and candidate selection

- Opposite-charged muon pair
- \rho(S) \geq 4 GeV
- \eta depending mass cuts
- Vertex \rho(S) < 10
- Opposite-charged track pair (no PID)
- \rho(S) > 1 GeV
- \eta(B_s) \leq 1 MeV

A3. Flavour tagging

Knowledge of the initial B_s meson flavour enhances the fit sensitivity to \phi_s. It can be inferred using the other B_s meson in the event (Opposite-Side Tagging).

Muon/electron tagging:
- Semi-leptonic decay of the B-s meson
- Using combined muons (have full tracks in the MS and in the ID), segment-tagged muons (have full tracks in the ID matched to segment(s) in the MS) or electrons
- Momentum weighted charge of the lepton and tracks around
- Diluted through \chi = s - l, even so it has good separation power

Jet-tagging:
- Used if the lepton is absent
- Momentum weighted track-charge in jet

Initial flavour hypothesis is expressed as probability that an event has a signal decay containing a B_s quark.

A4. Angular analysis

- B_s \to J/\psi \phi \to pseudoscalar \to vector-vector \to admixture of CP-odd and CP-even final states
- CP states separated statistically in the combined lifetime-angular event-by-event fit

A5. Fitting model

Unbinned maximum likelihood fit uses per-variable candidates:
- B_s mass m, and proper decay time \tau, and its uncertainty
- 3 angles between final-state particles in transversity basis \Omega
- B_s momentum p_{B_s}
- B_s tag probability and tagging method

Fit determines 9 physics variables that describe B_s \to J/\psi \phi and S-wave (B_s \to J/\psi \phi K^+ or B_s \to J/\psi \phi l(K^+)) component: \Delta \Gamma, \rho, \phi_s, \langle |O(0)| \rangle, \langle |A(0)| \rangle, \langle A(0) \rangle, \delta_0, \delta_1, \delta_2

A6. Fit projections and \phi_s - \Delta \Gamma contour plot

A7. Results

- 2011 and 2012 results statistically combined into the final RUN-1 result
- \phi_s and other parameters consistent with the Standard Model prediction

A8. Systematic uncertainties (2012)

Uncertainty in the calibration of the tag probability

Effect of residual misalignment (studied in signal MC)

Uncertainty in the relative fraction of B_s background (contaminations from B_s \to J/\psi \phi K^+ and B_s \to J/\psi \phi l(K^+)) misreconstructed as B_s \to J/\psi \phi

Uncertainties of fit model derived in pseudo-experiment studies

B. B^\pm mass in RUN-2

Performance needed for the future B_s \to J/\psi \phi and other B-mass measurements with the new data is tested using reconstructed B^ in 2015 data (3.2 fb^{-1} of 13 TeV pp collisions).

- ATLAS has a new Pixel layer (IBL) in RUN-2, 13 TeV
- Better ID performance

References:

Tomas Jakoubek (IoP ASCR, Prague), for the ATLAS Collaboration