
Background estimation with data 
▶  Jets→photons contribution estimated by 
comparing templates of jets that pass ɣ 
requirements and overall jets 
▶  Electrons→photons contribution estimated by 
measuring the fake rate from Z→ee 

Control Regions

SIGNATURES SUSY Inspired Light Scalars

M(�̃0
1) > M(h)/2 M(�̃0

1) < M(h)/2

RUN I: GLUON FUSION

RUN I: Z(LL)H RUN I: COMBINATION

▶  Search for SUSY inspired h→ɣ+MET decay in 
the gluon fusion production mechanism 
▶  Performed with 7.3/fb of parked CMS Run I 
data (ɣ+MET trigger) at 8 TeV 
▶  Main backgrounds from misidentified photons 
(jets and electrons), mismeasured MET, ɣ+Jets 
and Z(νν)ɣ 
▶  Limits on SUSY  
exotic decay and on  
model independent  
signature

▶  Search for SUSY inspired h→ɣ+MET and 
h→ɣɣ+MET decays in the ZH production 
mechanism with the Z leptonic decay 
▶  Performed with 19.4/fb of CMS Run I data 
at 8 TeV 
▶  Main backgrounds from Electroweak 
processes and top quark decays 
▶  Limits on SUSY exotic decay

8 5 Systematic uncertainties

an additional source of systematic uncertainty.

4.3 Non-collision background estimates from data

The search is susceptible to contamination from non-collision backgrounds which arise from
cosmic ray interactions, spurious signals in the ECAL, and accelerator induced secondary par-
ticles (beam halo). These backgrounds have different arrival time distributions compared to
prompt photons produced in hard scattering. To quantify the contamination due to these back-
grounds a fit is performed to the candidate time distribution using background templates de-
rived from the data. The contamination due to out-of-time background contribution is found
to be negligible, therefore not included in the final event yield.

4.4 Background modeling validation

The background modeling is examined in several control regions. A control sample enriched
in W(ln)g events is defined with inverted lepton-veto requirement in the preselection, thus
selecting events with a loose e or µ. It is expected to be free of any signal contamination due
to the presence of a lepton. Another control sample enriched in g+jet events is constructed by
just requiring no selection other than the preselection requirements. Figure 4 shows the data vs
SM expectation in the two control regions. The observed data and estimated SM backgrounds
are found to be consistent both in yield and shape.

Ev
en

ts
 / 

25
 G

eV

-110

1

10

210

310

410

510

610

710  + Jetsγ

Jet faking Photon

Electron faking Photon

γZ 

γ ν l → γW 

 γ γ & ν) τ(µ →W 

 = 120ΧM

Data

 (8 TeV)-17.3 fb

CMS
Preliminary

 [GeV]γ
TE

50 100 150 200 250 300 350 400 450 500D
at

a-
Bk

g/
Bk

g.

-2
-1
0
1
2

(a)

Ev
en

ts
 / 

25
 G

eV

-110
1

10

210

310

410

510

610

710

810

910  + Jetsγ

Jet faking Photon

Electron faking Photon

γZ 

γ ν l → γW 

 γ γ & ν) τ(µ →W 

 = 120ΧM

Data

 (8 TeV)-17.3 fb

CMS
Preliminary

 [GeV]γ
TE

50 100 150 200 250 300 350 400 450 500D
at

a-
Bk

g/
Bk

g.

-1
-0.5

0
0.5

1

(b)

Figure 4: The Eg
T distributions for data vs. SM expectation in a control region enriched by (a)

W(ln) events, and (b) g+jet events. The bottom panels in each plot show the ratio of (data -
background)/background and the gray band includes both the statistical and systematic un-
certainty on the background prediction.

5 Systematic uncertainties

The experimental systematic uncertainties considered in the analysis are listed in Table 3. Since
the model independent and model specific selections differ significantly, e.g. the inclusion
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5 Systematic uncertainties

The experimental systematic uncertainties considered in the analysis are listed in Table 3. Since
the model independent and model specific selections differ significantly, e.g. the inclusion

ɣ+Jets 
Control Region 

Photon fails 
identification 

criteria

W(lν)ɣ 
Control Region 

Request at  
least one lepton 

 in the events
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Process Estimate
g+ jets 179 ± 28
jet ! g 269 ± 94
e ! g 355 ± 28

W(! `n) + g 154 ± 15
Z(! nn̄) + g 182 ± 13

Other 91 ± 10
Total background 1232 ± 188

Data 1296
Mec0

1
= 65 GeV 653.0 ± 77

Mec0
1

= 95 GeV 1158.1 ± 137
Mec0

1
= 120 GeV 2935.0 ± 349

Table 5: Expected (SM background) and observed event yields after the selection optimized for
the supersymmetric decay of the Higgs boson (h ! eGec0

1, ec0
1 ! eGg) and the signal predictions

correspond to BR(H ! invisible + g) = 100%.
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Figure 7: Expected and observed 95% CL upper limits on (a) s ⇥ BR and (b) the ratio of this
product over the SM Higgs production cross section as a function of different Mec0

1
values. The

uncertainty on the expected limit at 1s and 2s levels are shown as green and yellow bands,
respectively.
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Figure 6: The expected (a) and observed (b) 95% CL upper limit on s ⇥ BR⇥ A⇥ e for different
MT and E/T thresholds and (c) for MT > 100 GeV as function of the E/T threshold.

(s ⇥ BR)/sSM, where sSM is the cross section for the standard model Higgs boson, are evalu-
ated for different mass values of ec0

1 ranging from 65 GeV to 120 GeV and are shown in Fig. 7.

7 Conclusions

A search for new physics in the g+E/T final state is performed using pp collision data corre-
sponding to an integrated luminosity of 7.3 fb�1 collected at

p
s = 8 TeV using data parking

triggers in a phase space region defined by ET > 45 GeV and E/T > 40 GeV. In the absence of
any evidence of new physics, upper limits are placed on the production cross section of new
physics in a model-independent way for different E/T and MT thresholds. The data are also
examined using optimized selections for maximum sensitivity to an exotic decay of the Higgs
boson h ! eGec0

1, ec0
1 ! eGg predicted in a low-scale SUSY breaking scenario. Upper limits at

95% CL are placed on the new physics production cross section times the branching ratio, as
well as the ratio of this product to the SM Higgs boson production cross section. The results are
found to be compatible with the SM hypothesis. These results are the first limits on this model
from searches at pp colliders.
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FUTURE PROJECTIONS

POSTERS@LHCC 2016 - CERN, GENEVA, SWITZERLAND

▶ Projected sensitivities for the h→ɣɣ+MET final state in the 
SUSY (non-resonant) and Light Scalars (resonant) 
interpretations for the 14 TeV LHC with 100/fb integrated 
luminosity 
▶ Projected sensitivities estimated using LHE events for 
background processes generated for Snowmass studies at 14 
TeV 
▶ Signal events generated with MadGraph for gluon fusion 
and Z(μμ)h production mechanisms 
▶ Detector simulation performed with DELPHES based on a 
CMS detector card 
▶ Sensitivity estimated with  
where σsys is the effect of systematical uncertainties 
▶ Selections optimized for maximal sensitivity 
▶ Results given in terms of the h→ɣɣ+MET branching ratio 
for a 5σ sensitivity (discovery) or 2σ sensitivity (exclusion) Mass points (GeV)
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