

Measurement of the transverse momentum spectrum of the Higgs boson decaying into WW at 8 TeV with the CMS detector

Lorenzo Viliani (lorenzo.viliani@cern.ch), University & INFN of Florence, on behalf of the CMS Collaboration **Reference: CMS-PAS-HIG-15-010** Posters@LHCC: Students' Poster Session at the 2016 March LHCC meeting, 2nd March 2016, CERN

- State of the art

- Measurements of the production cross section and kinematic properties of the Higgs boson represent an important test for possible deviations from the **Standard Model (SM)**.
- The Higgs boson transverse momentum (p_{τ}^{H}) spectrum can be affected by the presence of new physics phenomena and its measurement allows testing the existing theoretical calculations in the SM Higgs sector.
- Higgs p_r differential and fiducial measurements at 8 TeV have been reported by ATLAS and CMS in the $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ decay channels.

4 - Measured spectrum

- Signal extracted subtracting backgrounds with a Maximum Likelihood fit.
- Sources of uncertainty divided in three categories:
- Experimental uncertainties: luminosity, lepton momentum scale and resolution, MET scale and resolution, jet energy scale, b tagging uncertainty.
- Background estimation uncertainties: related to the normalization estimation of each background, e.g. tt background.
- Theoretical uncertainties: related to the theoretical models used for simulating signal and background events.

 $p_T^H = |\vec{p}_T^{\ \ell\ell} + \vec{E}_T^{miss}|$

opposite charge;

 $|\eta| < 2.5$

- Moderate MET.
- Analysis performed looking at **opposite flavour leptons** ($e\mu$) in the final state.

• With respect to $H \rightarrow ZZ \rightarrow 4\ell$ or $H \rightarrow \gamma\gamma$:

• Worst p_{τ}^{H} resolution due to the presence of neutrinos.

3 - Analysis strategy

- Event selection based on the previously published $H \rightarrow WW \rightarrow 2\ell 2\nu$ measurements. • Important difference: this analysis is performed inclusively in jets multiplicity.
- To measure the differential cross section the p_{τ}^{H} spectrum is binned.
- accurate binning definition is needed to avoid too large bin migration effects
- 2D template fit used to measure signal strengths in each bin:
- di-lepton mass (m,) and transverse mass (m,) used to discriminate signal and backgrounds.

Estimation methods used for the various background processes

Process	Normalization	Shape	Control/template sample
WW	data	simulation	events at high $m_{\ell\ell}$ and $m_{\rm T}^{\rm H}$
Тор	data	simulation	top-enriched control region
W+jets	data	data	events with loosely identified leptons
$ W\gamma$	$\operatorname{simulation}$	data	events with an identified γ
$W\gamma^*$	data	simulation	$W\gamma^* \to 3\mu \text{ sample}$
$ Z/\gamma^* \to \tau \tau$	data	data	au embedded sample

Invariant mass of the two leptons	$m_{\ell\ell} > 12 \mathrm{GeV}$
Transverse momentum of the lepton pair	$p_{\rm T}^{\ell\ell} > 30 { m GeV}$
Invariant mass of the leptonic system in the transverse plane	$m_{\mathrm{T}}^{\mathrm{\tilde{H}}} > 50 \mathrm{GeV}$
No MET cut applied	

• **Basic principle**: use the MC signal samples to make the distribution of the variable of interest before and after the full GEANT4 simulation of the CMS detector and the event reconstruction. **CMS** *Preliminary* 19.4 fb⁻¹ (8 TeV)

6 - Comparison with theory predictions

- **Unfolded spectrum** of the Higgs boson transverse momentum shown with statistical, systematic and theoretical uncertainty contributions reported as separated error bands.
- Spectrum compared to two SM-based theory predictions:
- ggH production simulated using the HRes or PowhegV2 programs.

p_T^H unfolded spectrum

 Very good level of agreement between data and theory predictions within the uncertainties.

• Main backgrounds: $qq \rightarrow W^+W^-$ and tt+jets.

Backgrounds estimated using data driven methods whenever possible.

and correcting for the selection efficiency.

Correlation matrix

 $\sigma_{\rm fid} = 39 \pm 8 \; (\text{stat}) \pm 9 \; (\text{syst}) \; \text{fb}$

 $\sigma_{theory} = 48 \pm 8 \text{ fb}$