An analytic Tracking Code with many Restrictions used at GSI Peter Forck, Serban Udrea, GSI & Uni Frankfurt Original analytic solution in year 2000: P. Strehl, M. Dolinska, R.W. Müller Realization of code in year 2004: M. Herty (supervision P. Forck) IPM Workshop CERN, March 3rd, 2016

Outline of the talk:

- Applications at GSI
 - for IPM, Beam Induced Fluorescence and Bunch Shape Monitor
- Example of code input and results
- Conclusion

Ionization Profile Monitor at GSI Synchrotron SIS

IPMs at GSI:

- ► Large clearance 175 x 175 mm²
- ≻ Ion detection by E -field ≈0.5 kV/cm, Chevron MCP
- ➢ 'Old' SIS18 IPM wire readout, installed in 2000
- ➤ 'New' SIS18 and ESR IPM phosphor readout
- ► Vacuum pressure $p \approx 10^{-11}$ mbar

Realization at GSI synchrotron:

'New' IPM for SIS18 : Magnet Design

nn

Corrector Magnetic field for electron guidance: Maximum image distortion: Vortical IDN 5% of beam width $\Rightarrow \Delta B/B < 1\%$ **Challenges:** → High **B**-field homogeneity of 1% \succ Clearance of 480 mm \blacktriangleright Design for B = 30 mT480mn Correctors required to compensate beam steering ▶ Insertion length 2.5 m incl. correctors \succ in production phase For MCP phosphor readout for two modes slow with ≈ 10 ms for high resolution fast turn-by-turn with lower resolution

Installation without magnets in 2017

Magnetic field required for GSI-parameters

Ion detection: For intense beams \Rightarrow broadening due to space charge Simplified estimation for electron detection: B-field required for e⁻ guidance toward MCP. *Effects:* 3-dim start velocity of electrons $E_{kin}(90\%) < 50 \text{ eV}, \ \theta_{max} \approx 90^{\circ}$

 \Rightarrow r_{cvl} < 100 µm for B \approx 0.1 T

H₂⁺ detection

5

Beam:

IPM:

10

GSI IPM simulation Workshop CERN March 2016

Peter Forck, IPM simulation code at GSI

0

detection direction y [mm]

160

140

120

100

80

60

40

20

0

-10

y-distribution

initial

ini.-fit

-5

final

BIF-Monitor: Technical Realization at GSI LINAC

Six BIF stations at GSI-LINAC (length \approx 200m):

- 2 x image intensified CCD cameras each
- double MCP ('Chevron geometry')
- Optics with reproduction scale 0.2 mm/pixel
- Gas inlet + vacuum gauge
- Pneumatic actuator for calibration
- Insertion length 25 cm for both directions only
- Advantage: single macro-pulse observation

F. Becker (GSI) et al., Proc. DIPAC'07, C. Andre (GSI) et al., Proc. DIPAC'11

Peter Forck, IPM simulation code at GSI

Beam Induced Fluorescence Monitor BIF: Image Intensifier

beam residual gas (+ N₂) photon window lens system Image Intensifier CCD camera

Example at GSI-LINAC: 4.7 MeV/u Ar ¹⁰⁺ beam I=2.5 mA equals to 10^{11} particle **One single** macro pulse of 200 µs Vacuum pressure: p= 10^{-5} mbar (N₂)

Parameter of BIF Monitor:

- Single photon detection by image intensifier
- > N₂ working gas
- → Observation of transition of N_2^+ lifetime ≈ 60 ns
 - \Rightarrow N₂⁺ is influenced by space charge

Non-intercepting Bunch Shape Measurement

Scheme for non-destructive device:

- Secondary electrons from residual gas
- Acceleration by electric field
 (like for Ionization Profile Monitor)
- Target localization by apertures and electro-static analyzer
 - ($\Delta y = 0.2$ to 2 mm, $\Delta z=0.2$ to 1 mm)
- ➢ rf-resonator as 'time-to-space' converter λ/4 resonator, Q₀≈300, P_{in}=50 W max.
- Readout by MCP + Phosphor + CCD
- Measurement within several macro-pulses

With courtesy of B. Zwicker

Peter Forck, IPM simulation code at GSI

Non-intercepting Bunch Shape Measurement

ealization of non-intercepting monitor at GSI: Installation in transfer line UNILAC to SIS:

IPM simulation Workshop CERN March 2016

Simulation of Space Charge Effects: General Behavior

Space-charge effects:

Beam's space charge ↔ external homogeneous E- field (larger effect as for biased wire) Numerical calculation: e⁻ created with realistic velocity distribution by atomic collision (δ-rays) e⁻ trajectory in field of moving bunches of parabolic distribution linear optics for energy analyzer up to rf-deflector

IPM simulation Workshop CERN March 2016

Simulation of Space Charge Effect: Results

Parameter like for measurement **Features:**

- Arrival time at deflector is sufficient constant, ∆t < 40 ps compared to reference particle
 Cut through bunch is sufficient stable ∆y < 0.8 mm (root-points are ±5 mm here)
- **▶But** for high current:
 - #e⁻ vary along the bunch
- (bunch head pulls e⁻ toward center)
- ⇒ lower space charge by transverse defocusing of beam
- \Rightarrow guidance of e- by B-field
- \Rightarrow further investigations required

Simulation Code: General Idea

Idea of the simulation code:

- Homogenous external electric and magnetic fields
- > Analytical description of bunch charge density $\rho(\vec{x})$
- > Bunch $\vec{E}(\vec{x})$ -field via **analytical** solution of Poisson $\Delta \phi(\vec{x}) = -\frac{\rho(\vec{x})}{\varepsilon_0}$ in free space
- Movement of bunches each time step, multiple bunches can be defined
- > Monte Carlo based selection of initial start coordinates and velocities
- > Trajectory with Runge-Kutta tracking in moving bunch field and external fields
- Storage of initial and final coordinates, velocities and arrival time for each particle
 History: Code produced by a (clever) student in 2004
- **Language:** C++ for the core; GUI inn C++ with specifics of outdated Borland compiler, which is **not** available anymore, , maintenance difficult
- Should be usable for LINAC and synchrotron beams 1 MeV/u $< E_{kin} < 30$ GeV/u

Analytical description of bunch fields:

- Horizontal *x* equals vertical *y* size (rotational symmetric),
 longitudinal extension free parameter, but trans. size *R* larger than bunch length *L*
- ► Density: homogeneous $\rho(\vec{x}) = const$ or parabolic $\rho(r, z) \propto \left(1 \frac{r^2}{R^2} \frac{z^2}{L^2}\right)$ Formulas see: P. Strehl Internal publication, partly in book Springer Verlag based on transformation to elliptical coordinates & solution of Poisson Equation
- Solution of bunch field using elliptical coordinates i.e. non-linear transformation
- No boundary condition (i.e. free space = 'open boundary' is assumed)
- > Movement of bunches, originally non-relativistic
 - \rightarrow Lorentz-Transformation of fields for relativistic case might be wrong
- > Only homogeneous external E and B-fields
- Too simple, maybe unrealistic electron start velocities (?)
- Advantage: Bunch can be described with few parameters, fast calculation

Code Input

Modes of usage:

- E & B field at location x
- Single particle trajectory
- > IPM mode:Boundary dependent
- BIF-mode: Time dependent

Actual parameter:

- \succ H₂⁺ ion detection
- $\succ E_x = 1 \text{ kV/cm}$
- > Bunch 1 m length = 22 ns
- \blacktriangleright 1 cm trans. extension
- ➢ parabolic density
- \succ 10¹¹ charges
- > $\beta = 15$ %, 1 MHz acc.

Parameters Time Options Sinulate Simulation time [ns] Single Particle [300] Static Point Steps [1/ns] Multiple Points [1]	Coordinate [mm] transversal X0 1.0000 Y0 0.0000 longitudinal Z0 0.0000	Velocity [mm/ns] transversal VX0 0,0000 VY0 0,0000 longitudinal VZ0 0,0000
Variables of residual gas Mass [1=Proton] 2,00 Charge 1 Electron Variables of Bunches	External El. Field [V/mm] Switch on/off EX 100,0 EY 0,0 EZ 0,0	External Magn. Field [mT] Switch on/off BX 0 BY 0 BZ 0
Beta (v/c) 0,1500 Rep. Rate [MHz] 1[,0	Bunch Shape C Sphere C Ellipsoid	Radius (mm)10,00long half axis a(mm)500,00trans half axis b(mm)5
Number of Bunches 5 Particles per Bunch 1,0E10 Calculation with relativistic effects	Charge Distribution C Homogeneous • Parabolic	Charge per Particle 10

Peter Forck, IPM simulation code at GSI

Code Input

Bounding box

& number of trajectories

Actual parameter:

- \succ H₂⁺ ion detection
- $\succ E_x = 1 \text{ kV/cm}$
- ➢ Bunch 1 m length
- \blacktriangleright 1 cm trans. extension
- ➢ parabolic density
- \succ 10¹¹ charges
- > $\beta = 15$ %, 1 MHz acc.

1000		
👔 Boundary Hit Algorith	hm	
Simulation Type Chart	ts Return	
Simulates the path of a clo	ud of particles starting in the box and hiting the barrier.	Barrier ×↑
Coordinates Of The Box	x [mm]	SimulationOffset of the
	Minimum Values Maximum Values	box bunches
x Coordinates	-12 12	
y Coordinates	-12 12	
z Coordinates	-600 600	Gap between Moving direction
		two bunches y z
Offset Of The Bunches [r	mm] 0	
x-Coordinate Of The Barr	ier [mm] 50	
Further Inputs		Distance Between Two Bunches [mm]
Maximum Time [ns]	300	
Steps per ns	5	Height Of Bunches [mm] Length Of Bunches [mm] 5 100,00
#Simulation Points (SI	hape) #Simulation Points (Charge)	Status
3000	10	Finished.
		✓ Debugplot
Check break condition	F	
Every [ns]	Every 1 step	
Simulation		

Peter Forck, IPM simulation code at GSI

IPM simulation Workshop CERN March 2016

G S I

Code Output Boundary Hit Algorithm Simulation Type Charts Return **Actual parameter:** \Rightarrow broadening for ion detection rrier. > H₂⁺ ion detection Simulation Offset of the \Rightarrow differences for head \leftrightarrow tail bunches box . $\geq E_x = 1 \text{ kV/cm}$ -12 12 Results Of The Bdry Hit Algorithm 23 x Coordinates \blacktriangleright Bunch 1m length = 22ns 724 Barrier position [mm] 50 Total points -12 12 1 cm trans. extension \geq y Coordinates 724 Reached barrier #Intervalls 18 z Coordinates -600 60 > parabolic density Histogram of the distribution of final positions \geq 10¹¹ charges Clear Offset Of The Bunches [mm] 0 Points 60 $\triangleright \beta = 15 \%$, 1 MHz acc. Draw «Coordinate Of The Barrier Immi 50 20 k,y) in one of these plots means 23 hat y points have a property Form11 nside the intervall [x, x+val] 130 140 150 160 where val is the value in the box t [ns] below the plot Clear points 2,116666666 300 Time [ns] 100 5 #Points 80 #Points 60 60 135 initial coordinate ation Poin final x coordinate 500 1.000 Point number y [mm] z [mm] final y coordinate 47,9627954 1,2691136 50 Distribution of the initial values 40 E 30 20 step E m striod# 40 Points 60 -400-200 0 200 400 -400 -200 200 400 -2 0 z [mm] z [mm] y [mm] z (mm

IPM simulation Workshop CERN March 2016

Online Output

Actual parameter:

- electron detection
- $\succ v_{ini} = 0$
- $> B_x = 100 \text{ mT}$
- $\succ E_x = 1 \text{ kV/cm}$
- ➢ Bunch 1 m length
- ➤ 1 cm trans. extension
- ➢ parabolic density
- \succ 10¹¹ charges

E Form11

10

50 40

E 30

400

-200

Time [ns]

> $\beta = 15$ %, 1 MHz acc.

500

Point number

z [mm]

1.000

200

400

jan al

Boundary Hit Algorithm Simulation Type Charts Return Simulates the path of a cloud of particles starting in the box and hiting the barrier. Simulation \Rightarrow no broadening for e⁻ detection ffset of the box. bunches 12 -12 x Coordinates Height -12 12 y Coordinates Width Mourier direction z Coordinates -600 - O X Results Of The Bdry Hit Algorithm ches 724 Barrier position [mm] 50 Total points Offset Of The Bunches [mm] 724 10 Reached barrier #Intervalls 18 x-Coordinate Of The Barrier [mm] 50 Histogram of the distribution of final positions Clear 400 Further Inputs 200 girls Draw Maximum Time [ns] 100 (x,y) in one of these plots means unches [mm] that y points have a property nside the intervall [x, x+val] Steps per ns where val is the value in the box t [ns] below the plot 23 #Sim 0,4765923872 10 Clear points 80 #Points #Points 60 40 20 11 y [mm] z [mm] 50.6010964 0.5458777 Distribution of the initial values 100 80 100 #Points #Points 60 40 -2 0 0 200 400 SI -400-200 y [mm z [mm] z [mm]

בו אי שווומומדוטה איטו אשווטף כבוגוא אומי ch 2016

Usage of e⁻ Distribution

Actual parameter:

- electron detection
- $\succ B_x = 100 \text{ mT}$
- $\succ E_x = 1 \text{ kV/cm}$
- ➢ Bunch 1 m length
- \blacktriangleright 1 cm trans. extension
- ➢ parabolic density
- \succ 10¹¹ charges
- > $\beta = 15$ %, 1 MHz acc.

Electron parametrization: with 'separated' Ansatz:

- > energy $d\sigma/dE$ constant value $\theta < E < E_1$ linear decay $E_1 < E < E_2$ $\sigma = \theta$ for $E > E_2$
- > angular $d\sigma/d\theta$ Gaussian with center θ_1 and width θ_2

The distribution parameters are only reasonable for the velocity distribution of electrons. The initial velocity of an electron is calculated by the three variables Energy, Phi, Theta. The values are choosen by a Monte-Carlo Simulation. There are inputs necessary to determine the range of the simulation. The values for the energy are related to the velocity by v = c^{*}sqrt (2E / mc^{**2}), where mc^{**2} = 511E3 eV. The angle phi is choosen as equally distributed in [0, 2 pi].

Tests the distribution of the velocities

LPM simulation Workshop CERN March 2016

23

Peter TOTCK, IFM SIMULATION CODE AT USI

Simulation Code: General Idea

BIF type evaluation:

Actual parameter:

- \succ **H**₂⁺ ion detection
- \succ Bunch 1 m length
- \blacktriangleright 1 cm trans. extension
- ➢ parabolic density
- \succ 10¹¹ charges
- > $\beta = 15$ %, 1 MHz acc.

H₂⁺ fluorescence

 \rightarrow position after 100 ns

h Time Dependent Evoultion	
Simulations Charts Return	
Simulation of the time evolution of a given box Coordinates Of The Box [mm]	Simulation × Offset of the bunches
Minimum Values Maximum Values x,y Coordinates -12 12 z Coordinates -600 600	
Offset Of The Bunches [mm]	two bunches the bunches
Other Inputs Stopp Time [ns] 100 Steps per ns 1 #Simulation Points (Shape) #Simulation Points (Charge) 3000 10	Distance Between Two Bunches [mm] 4,497E4 Height Of Bunches [mm] 5 5 10 10 10 10 10 10 10 10 10 10
Output Progress Charts Valid Points 1291 Begin: red End: blue/green	8 4 0 -2 -4 -400 -200 0 200 z [mm]

Simulation Code: General Idea

Actual parameter:

- \succ N₂⁺ ion detection
- ➢ Bunch 1 m length
- 1 cm trans. extension \geq
- parabolic density
- \geq 10¹¹ charges
- > $\beta = 15$ %, 5 MHz acc.

N₂⁺ fluorescence

\rightarrow position after 100 ns

h Time Dep	endent Ev	oultion
Simulations	Charts	Return

Simulation of the time e	volution of a given box		Simulation X .	Offset of the
Coordinates Of The B	ox [mm]		box	bunches
	Minimum Values	Maximum Values		√_
x,y Coordinates	-12	12	Height	
z Coordinates	-600	600	Midth 4	
Offset Of The Bunche	es [mm] 0		Distance between two bunches	Moving direction of the bunches
Other Inputs			Distance Between Two B	unches (mm)
Stopp Time [ns]		100	4,497E4	
Steps per ns		1	Height Of Bunches [mm]	Length Of Bunches (r
#Simulation Points	(Shape) #Simu	ulation Points (Charge)	5	500,00
3000	10		Initial Velocity For All Parti	cles In The Box [mm/ns]
			0	Show Velocities
Output				

Peter Forck, IPM simulation code at GSI

IPM simulation Workshop CERN March 2016

- 🗆 X

Length Of Bunches [mm]

Present status: Wrong transformation of E and B field \rightarrow will be corrected

The electrostatic field of the bunch is calculated in its rest frame

according to the charge distribution and then transformed to the laboratory frame

- Field vectors are properly transformed
- > Longitudinal bunch size is **not** transformed:
 - \Rightarrow same size is assumed in the laboratory frame and the rest frame of the bunch
- > Time and coordinates are also not properly transformed,
 - \Rightarrow fields have the wrong geometry and a too large longitudinal extension

$$\begin{aligned} \mathbf{E}' &= \gamma \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) - (\gamma - 1) \left(\mathbf{E} \cdot \hat{\mathbf{v}} \right) \hat{\mathbf{v}} \\ \mathbf{B}' &= \gamma \left(\mathbf{B} - \frac{\mathbf{v} \times \mathbf{E}}{c^2} \right) - (\gamma - 1) \left(\mathbf{B} \cdot \hat{\mathbf{v}} \right) \hat{\mathbf{v}} \end{aligned}$$

The electrostatic field of elongated bunches is calculated by means of the Poisson equation and a transformation to curvilinear coordinates

New coordinates ξ and η via

$$z(\xi,\eta) = c \cdot \xi \cdot \eta$$
 and $r(\xi,\eta) = c \cdot \sqrt{(\xi^2 - 1)(1 - \eta^2)}$

 $-1 \le \eta \le 1$ and $1 \le \xi \le \infty$ with the normalization $c = \sqrt{L^2 - R^2}$

The Poisson equation is solved analytically for the considered charge distributions

$$\Delta\phi(\xi,\eta) = \frac{1}{c^2(\xi^2 - \eta^2)} \left[\frac{\partial}{\partial\xi} \left(\xi^2 - 1\right) \frac{\partial\phi}{\partial\xi} + \frac{\partial}{\partial\eta} \left(1 - \eta^2\right) \frac{\partial\phi}{\partial\eta} \right] = \rho(\xi,\eta)$$

Problems appear in the numerical implementation when the longitudinal bunch size is much large than the transversal size i.e. L >> R

problems are expected if $L > 10^5 R$, but it seems to appear for lower values of LNot evident presently: *Is it a numerical or analytical problem?*

\Rightarrow solution is pending

Simulation Code: Conclusions

Restrictions:

- \blacktriangleright Horizontal *x* equals vertical *y* extension, longitudinal extension free parameter
- ➤ Density: $\rho(\vec{x}) = const$ (i.e. transversal KV-distr., longitudinal 'air-bag') used for tests
 or parabolic $\rho(r, z) \propto \left(1 \frac{r^2}{R^2} \frac{z^2}{L^2}\right)$
- No boundary conditions (i.e. free space = 'open boundary' is assumed)
- Long bunches with L >> R might be wrong
 possible reason related to elliptical coordinates i.e. non-linear transformation
- Relativistic case is wrong, but could hopefully be corrected
- > Only homogeneous external E and B-fields,
- Too simple, maybe unrealistic electron start velocities
- \Rightarrow Usage: could be used as a first approximation for IPM, BIF & BSM
- Advantage: Bunch can be described with few parameters, fast calculation, good GUI
- **Code language:** C++ for the core, GUI using outdated Borland compiler
- History: Production in 2004 by a student, never benchmarked against other codes !