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Nova Era Main Injector / Recycler

* Recycler accumulates protons from Booster
synchrotron
— 8 GeV

— ~5 x 1013 protons

* Main Injector receives beam from Recycler
— 8 GeV incoming
— Up to 120 GeV outgoing

* Nova neutrino experiment
— 588 53-MHz rf buckets
e each bucket ~18 ns

e 1x 10" protons per bucket
* Bunch length typically ~¥1-3 ns

— Few millimeters transverse sigma
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MATLAB Simulation

e Simulation tracks particles through arbitrary E and B
fields

e Uses interpolation to obtain the fields at any point
from previously calculated field distributions

* Propagates using a relativistic formula
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Matlab Simulation

e Once the acceleration is determined, a discrete
evaluation of the differential equation of motion is
used to step the particles
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 The magnetic and electric fields are handled separately

— Magnetic contribution to the motion is only applied to the
components perpendicular to the B field

— Magnitude of the velocity perpendicular to the B field is
forced to be preserved, since the B field does no work

* This in particular helps with the tight spirals along the field lines
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Source Fields

 The electric and magnetic fields of the bunch are
calculated before hand for various bunch parameters

— Evaluated with proper time delay to represent the moving
beam

e Electric field of Fermilab IPM determined from a 2-D
Poisson calculation

— Would like to create a more detailed 3-D electric field
distribution using CST

— Try to explain discoloration on beam chamber out from
ends of IPM active region

 Magnetic field of Fermilab IPM from 3-D magnet
model
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lonization Particle Distributions

* |onized particle distributions are random in
emission angle with 1/E? energy distribution

— Don’t think random emission is correct

Dystribution of ionization electron energies

* Not sure how to deal =
with low KE regime

— Dominated by quantum
effects?

— Does it matter?
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Gated-on Expected Signal

* From figure 7 of Sauli #, the number of primary ion pairs
produced in one centimeter of a gas species i at one
atmosphere of pressure by one minimum ionizing particle
can be roughly parameterized as

3
n; = EZL

* Expressing this in terms of the proton bunch parameters
and partial pressures in the beampipe one arrives at
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At the peak of a Main Injector bunch, the number of
ionization electrons is ~10 per anode strip (no MCP gain)

#F. Sauli, “Principles of Operation of Multiwire Proportional and Drift Chambers”, CERN 77-09, 3/5/77.
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Particles originating
from single point

(resolution contribution)

Elapsed time ~ 1.7 ns
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Gated-on IPM

Particles originating from single point

(resolution contribution)
Bunch offset refers to x
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. — Gated-off IPM

vertical B field OFF
Cathode E Field ~ 0 kV/m
Electron > B Field ~ 1 kg
Suppression Grid
Field shaping g
electrodes >
Wire mesh gate
Microchannel -
Plate (MCP) Electrons
propagate into
Anode strips VN> W == N == N == N =y Y VY or out of the page
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Gated-off Fields

X Component of E field Y Component of E field
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Gated-off Motion

Electron drift along beam direction
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Gated-off Behavior

Y motion vs time
Drift Velocity
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Gated-off lon Paths

Elapsed time is ~1.5 us

Ok, since ions o.|o not. s ; ; i ;
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Gated Grid Test

Control Grid Upstairs Test R4H

R4HIPM
LabView 14.0 Ver. 2.5 12/11/2014
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Conclusions

e Use of Matlab simulation with fields generated from
other sources allowed an evaluation of the gating grid
behavior for the new IPMs at Fermilab

 Matlab historically not the best choice for tracking
since it is/was an interpreted language
— Works well if problem can be formulated in matrix form

e Details of initial momenta of ionization products very

crude

— Decided that details were probably only relevant for low
momentum transfers

— Low momentum transfers quickly overcome by clearing
and magnetic fields
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Extras
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v to Nova

Source and Linac

Booster Synchrotron

Tevatron

Antiproton
Accumulator and
Debuncher

Recycler and
Main Injector
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IPM
Active
Region
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Magnet Measurements
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Magnet Measurements
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Magnet Measurements
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B Field Line

Deviation
from top to
bottom
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Average value of 200 um could be hall probe
rotation; corresponds to ~0.1 degrees
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MI Orbit Perturbation

e Measured magnet integrated field is
~0.001 T—m

e Maximum displacement around the ring for
the measured field integral is
[Bydl g
Pm 2SInmv

* For the Main Injector p,;,~27 T—m and the
maximum [ is 50 and the tune, v, is 0.43

— D~0.001 m

D =
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IPM Concept

Magnet with
vertical B field

Cathode s

Electron
Suppression Grid

Field shaping Beam .N lonization
electrodes (into page) Happens

Electrons

Wire mesh gate \

Microchannel

Plate (MCP) TS
A A

Anode strips
500 pm spacing
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Gated IPM Concept

* Problem with MCP is short lifetime

— Plate is using up lifetime whenever beam is in the
machine and the IPM voltage is on

— Voltage takes a while to raise and lower

* Would like to be able to gate the charge to
preserve the MCP
— Stop the electrons and ions from reaching the MCP

— Allow the electrons and ions an escape path from the
IPM active region

* i.e. no Penning traps
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Gated IPM Concept

— The force on a charged pacg’gicle is

= = v = 4

F—q(E+Z_>><B) =mgr

— Assume that E = EyX and B = By

— Solve the differential equations and one gets
the usual solution of circular motion inthex — Z _
plane, constant motion along y and a drift along E X
B which in this case is Z, i.e. along the beam

— Putting in the values for the electric and magnetic

fields gives us a drift velocity of ¥10 cm/us along the
proton beam direction

* The electrons will have drifted beyond the MCP in ~1-2 us
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Magnetic Field in Simulation

B field in Tesla
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. — Gated-on IPM

vertical B field ON
Cathode E Field ~ 1 kV/m
Electron B Field ~ 1 kg

Suppression Grid

Field shaping
electrodes

Wire mesh gate
Microchannel

Plate (MCP) Electrons spiral
down helically

Anode Strips /NN "\ == N Y N NS N st TN TN WY
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