IPM Simulations at Fermilab

3-4 March 2016

Randy Thurman-Keup

Nova Era Main Injector / Recycler

- Recycler accumulates protons from Booster synchrotron
 - 8 GeV
 - ~5 x 10¹³ protons
 - Main Injector receives beam from Recycler
 - 8 GeV incoming
 - Up to 120 GeV outgoing
 - Nova neutrino experiment
 - 588 53-MHz rf buckets
 - each bucket ~18 ns
 - 1 x 10¹¹ protons per bucket
 - Bunch length typically ~1-3 ns
 - Few millimeters transverse sigma

MATLAB Simulation

- Simulation tracks particles through arbitrary E and B fields
- Uses interpolation to obtain the fields at any point from previously calculated field distributions
- Propagates using a relativistic formula

Matlab Simulation

 Once the acceleration is determined, a discrete evaluation of the differential equation of motion is used to step the particles

$$-\mathbf{v}_{i+1}=\mathbf{v}_i+\mathbf{a}_i\Delta t$$

$$-\mathbf{r}_{i+1} = \mathbf{r}_i + \mathbf{v}_i \Delta t + \frac{1}{2} \mathbf{a}_{i+\frac{1}{2}} \Delta t^2$$

- The magnetic and electric fields are handled separately
 - Magnetic contribution to the motion is only applied to the components perpendicular to the B field
 - Magnitude of the velocity perpendicular to the B field is forced to be preserved, since the B field does no work
 - This in particular helps with the tight spirals along the field lines

Source Fields

- The electric and magnetic fields of the bunch are calculated before hand for various bunch parameters
 - Evaluated with proper time delay to represent the moving beam
- Electric field of Fermilab IPM determined from a 2-D Poisson calculation
 - Would like to create a more detailed 3-D electric field distribution using CST
 - Try to explain discoloration on beam chamber out from ends of IPM active region
 - Magnetic field of Fermilab IPM from 3-D magnet model

Ionization Particle Distributions

- Ionized particle distributions are random in emission angle with 1/E² energy distribution
 – Don't think random emission is correct
- Not sure how to deal with low KE regime
 - Dominated by quantum effects?
 - Does it matter?

Gated-on Expected Signal

 From figure 7 of Sauli [#], the number of primary ion pairs produced in one centimeter of a gas species *i* at one atmosphere of pressure by one minimum ionizing particle can be roughly parameterized as

$$n_i \approx \frac{3}{2}Z_i$$

• Expressing this in terms of the proton bunch parameters and partial pressures in the beampipe one arrives at

$$n_j(t) \approx \frac{QL\delta}{500e\sigma_T \sigma_t 2\pi} \Big[e^{-\frac{(j\Delta)^2}{2\sigma_T^2}} \Big] \Big[e^{-\frac{t^2}{2\sigma_t^2}} \Big] \sum_i Z_i P_i$$

At the peak of a Main Injector bunch, the number of ionization electrons is ~10 per anode strip (no MCP gain)

[#]F. Sauli, "Principles of Operation of Multiwire Proportional and Drift Chambers", CERN 77-09, 3/5/77.

Gated-on IPM

Particles originating from single point (resolution contribution)

Elapsed time ~ 1.7 ns

Gated-on IPM

Particles originating from single point (resolution contribution)

Bunch offset refers to x

X Component of E field

Gated-off Fields

Y Component of E field

Gated-off Motion

IPM Simulation Workshop -- R. Thurman-Keup

輩 Fermilab

Gated-off Behavior

Gated-off Ion Paths

Gated Grid Test

Control Grid Upstairs Test R4H

Conclusions

- Use of Matlab simulation with fields generated from other sources allowed an evaluation of the gating grid behavior for the new IPMs at Fermilab
- Matlab historically not the best choice for tracking since it is/was an interpreted language
 - Works well if problem can be formulated in matrix form
- Details of initial momenta of ionization products very crude
 - Decided that details were probably only relevant for low momentum transfers
 - Low momentum transfers quickly overcome by clearing and magnetic fields

Extras

輩 Fermilab

口 Fermilab

Magnet Measurements

Magnet Measurements

Average value of 200 μ m could be hall probe rotation; corresponds to ~0.1 degrees

MI Orbit Perturbation

- Measured magnet integrated field is ~0.001 T-m
- Maximum displacement around the ring for the measured field integral is

$$D = \frac{\int B_y \, dl}{\rho_m} \frac{\beta}{2\sin \pi \nu}$$

• For the Main Injector $\rho_m \sim 27 \text{ T}-\text{m}$ and the maximum β is 50 and the tune, ν , is 0.43 $-D \sim 0.001 \text{ m}$

Gated IPM Concept

- Problem with MCP is short lifetime
 - Plate is using up lifetime whenever beam is in the machine and the IPM voltage is on
 - Voltage takes a while to raise and lower
- Would like to be able to gate the charge to preserve the MCP
 - Stop the electrons and ions from reaching the MCP
 - Allow the electrons and ions an escape path from the IPM active region
 - i.e. no Penning traps

Gated IPM Concept

- The force on a charged particle is $\vec{F} = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right) = m \frac{d\vec{v}}{dt}$

– Assume that $\vec{E} = E_0 \hat{x}$ and $\vec{B} = B_0 \hat{y}$

- Solve the differential equations and one gets the usual solution of circular motion in the $\hat{x} - \hat{z}$ plane, constant motion along \hat{y} and a drift along $\vec{E} \times \vec{B}$ which in this case is \hat{z} , i.e. along the beam
- Putting in the values for the electric and magnetic fields gives us a drift velocity of ~10 cm/ μ s along the proton beam direction

• The electrons will have drifted beyond the MCP in ~1-2 μs

Magnetic Field in Simulation

3 March 2016

IPM Simulation Workshop -- R. Thurman-Keup

