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GW150914

◦ Inspiral, merger and ring-down of a binary black hole observed by LIGO.

◦ Masses of 36+5
−4 M� and 29+4

−4 M�.

◦ Frequency ranging from 35 to 250 Hz and velocity up to ∼ 0.5c.

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 061102]
[N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955]
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An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform
of such GWs :

◦ post-Newtonian formalism provides an analytical expansion in v
c (valid

only during the inspiralling)

◦ numerical Relativity provides accurate simulations, including the merger
and the ring-down

GW150914 data are in good agreement with GR predictions
[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

⇒ opportunity to test various models beyond GR.
[N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955]

Our objective: constrain the scale of noncommutative space-time.
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The post-Newtonian formalism
L. Blanchet, Living Rev. Rel. 17 (2014)
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Definitions and notations

The full EFE in the harmonic gauge (∂µhαµ = 0) can be written as

�hαβ =
16πG

c4 ταβ

with the gravitational-field amplitude h and the matter-gravitational source τ:

hαβ =
√
−ggαβ − ηαβ, ταβ = |g|Tαβ +

c4

16πG
Λαβ.

For a source term with characteristic velocity v, the post-Newtonian formalism
(PN) solves the EFE as an expansion in powers of v

c . As a convention, a term
of order n is called a n

2 PN term and written as

O (n) ≡ O
(

vn

cn

)
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How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the
overlap zone:

Post Newtonian (PN) -
(

1
c

)n
:

◦ hαβ = ∑∞
n=2

1
cn hαβ

n

◦ ταβ = ∑∞
n=−2

1
cn τ

αβ
n

◦ ∇2hαβ
n = 16πG τ

αβ
n−4 + ∂2

t hαβ
n−2

Post Minkowskian (PM) - Gn:

◦ hαβ = ∑∞
n=1 Gnhαβ

n

◦ �hαβ = Λαβ

◦ �hαβ
n = Λαβ

n [h1, · · · , hn−1]
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Matter source

Consider a binary system of two black holes of masses m1 and m2. It is usually
approximated by two point-like particles:

Tµν(x, t) =
m1√

ggρσ
vρ

1vσ
1

c2

vµ
1 (t)v

ν
1(t) δ3(x− y1(t)) + 1↔ 2

Useful parametrization:

◦ total mass: M = m1 + m2

◦ reduced mass: µ = m1m2
M

◦ symmetric mass ratio: ν =
µ
M = m1m2

M2
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The balance equation

Equations of motion - energy E:

◦ ∇νTµν = 0

◦ a1 = −Gm2
r2

12
n12 +O(2)

◦ E =
m1v2

1
2 −

Gm1m2
2r12

+O(2)+ 1↔ 2

Radiated flux F :

◦ F = G
c5

(
1
5 I(3)ij I(3)ij +O(2)

)
◦ F = G

c5

(
32G3 M5ν2

5r5 +O(2)
)

Conservation of energy implies the balance equation and the orbital phase:

dE
dt

= −F ⇒ φ =
∫

Ω(t)dt
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State-of-the-art computations

For data analysis, consider the waveform in frequency space:

h( f ) = A( f ) eiψ( f ).

The phase ψ( f ) (Fourier transform of φ(t)) has been calculated to 3.5PN
accuracy:

ψ( f ) = 2π f tc − φc −
π

4
+

3
128

7

∑
j=0

ϕj

(
πMG f

c3

)(j−5)/3
,

where the phase coefficients are

ϕ0 = 1
ϕ1 = 0
ϕ2 = 3715

756 + 55
9 ν

ϕ3 = −16π

ϕ4 = 15293365
508032 + 27145

504 ν + 3085
72 ν2

· · ·
[T. Damour, B. Iyer and B. Sathyaprakash, Phys. Rev. D 63 (2001) 044023]

[G. Faye, S. Marsat, L. Blanchet, B. Iyer, Class. Quantum Grav. 29 (2012) 175004]
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GR vs. GW150914
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Pictorial representation on simulated data

[C. Mishra, K. Arun, B. Iyer, B. Sathyaprakash, Phys. Rev. D 82 (2010) 064010]
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Bayesian analysis from GW150914

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]
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Noncommutative corrections to the waveform
A. Kobakhidze, CL, A. Manning, PRD 94 (2016) 064033
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Noncommutative space-time

NC space-time arises in a number of contexts:

◦ Originally proposed by Heisenberg as an effective UV cutoff.

◦ Snyder formalized the idea [Phys. Rev. 71 (1947) 38].

◦ Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

◦ Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032 ].

We focus on the canonical algebra of coordinates:

[x̂µ, x̂ν] = iθµν ∆xµ∆xν ≥ 1
2
|θµν|

Previous constraints on noncommutative scale at inverse ∼ TeV.
[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

f (x) ? g(x) = f (x)g(x)+
+∞

∑
n=1

(
i
2

)n 1
n!

θα1 β1 · · · θαn βn ∂α1 · · · ∂αn f (x) ∂β1 · · · ∂βn g(x)
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Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

◦ Consider a Schwarzschild black hole described by a massive scalar field in
noncommutative QFT:

Tµν
NC(x) =

1
2
(∂µφ ? ∂νφ + ∂νφ ? ∂µφ)− 1

2
ηµν

(
∂ρφ ? ∂ρφ−m2φ ? φ

)

◦ Neglect corrections to the laws of GR, since noncommutative gravity
appears at O(|θ|2) and is model-dependent.

[X. Calmet, A. Kobakhidze, Phys. Rev. D74 (2006) 047702] [P. Mukherjee, A. Saha, Phys. Rev. D74 (2006) 027702 ]
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Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

Tµν
NC(x, t) ≈ Tµν

GR(x, t) +
m3G2

8c4 vµvνΘkl∂k∂l δ3(x− y(t))

with

Θkl =
θ0kθ0l

l2
Pt2

P
+ 2

vp

c
θ0kθpl

l3
PtP

+
vpvq

c2
θkpθlq

l4
P

=
θ0kθ0l

l2
Pt2

P
+O(1)

Binary black hole EMT with 2PN noncommutative corrections:

Tµν(x, t) = m1γ1vµ
1 vν

1δ3(x−y1(t))+
m3

1G2Λ2

8c4 vµ
1 vν

1θkθl∂k∂l δ3(x−y1(t))+ 1↔ 2

where

Λθi =
θ0i

lPtP
.
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The modified balance equation

Correction to E:

◦ ∇νTµν = 0

◦ ENC =
G3 M3µ(1−2ν)Λ2

8c4r3 +O(5)

Correction to F :

◦ F = G
c5

(
1
5 I(3)ij I(3)ij +O(2)

)
◦ FNC = G

c5

(
− 36

5
G5 M7

c4r7 ν2(1− 2ν)Λ2 +O(5)
)

d(E + ENC)

dt
= −F −FNC

Lowest-order correction to the orbital phase:

ϕ4 =
15293365

508032
+

27145
504

ν +
3085
72

ν2 +
5
4
(1− 2ν)Λ2
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Constraint on the scale of noncommutativity
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Noncommutativity vs. GW150914

δϕNC
4 =

ϕNC
4

ϕGR
4

=
1270080 (1− 2ν)

4353552 ν2 + 5472432 ν + 3058673
Λ2

|δϕNC
4 | . 20⇒

√
Λ . 3.5

20 / 21



Conclusion

◦ Observation of the collapse of a binary black hole by LIGO.

◦ GW waveform consistent with GR.

◦ Derivation of the lowest-order (2PN) noncommutative correction to the
GW waveform.

◦ Constraint on the scale of noncommutativity to around the Planck scale:

|θ0i| . 12 · lPtP

∼ 15 orders of magnitude improvement
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