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Can we use a Higgs field as an inflaton?

Assuming the Universe filled with a homogeneous scalar field ϕ
with a potential λϕ4 (like e.g. Higgs) we can’t fit the data. What
could be the solution to this problem?

Non-minimal coupling to gravity: Let’s assume that in stead of
regular GR action we take

S =

∫
d4x
√
−g
(

1

2
f (ϕ)R − 1

2
(∂ϕ)2 − U(ϕ)

)
. (1)

Higgs inflation: f = 1 + ξϕ2, U = λϕ4/4. For ξ → 0 or ϕ→ 0 one
restores GR. The letter case happens today! Vev of Higgs is much
smaller than ϕinf (Shapshnikov, Bezrukov . . . )

In general inflation happens for ξϕ2 � 1. Normalisation of
inhomogeneities gives ξ ∼ 5× 104

√
λ. The best thing comparing

to other inflationary models? Reheating!
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The Einstein frame picture

The gravitational part of the action may be canonical after
transformation to Einstein frame

g̃µν = f (ϕ)gµν (2)

which gives the action of the form of

S =

∫
d4x

√
−g̃
[

1

2
R̃ − 1

2

(
∂̃φ
)2
− V (ϕ(φ))

]
, (3)

where

dφ

dϕ
=

√
3

2

(
fϕ
f

)2

+
1

f
(4)

and

V =
U

f 2
=
λ

4

ϕ4

(1 + ξϕ2)2
.



Einstein frame scalar potential



Generalisations of Higgs inflation

So far we have assumed f (ϕ) = 1 + ξϕ2. Could we generalise this
into any f (ϕ) and still obtain inflation? Sure, as long as Jordan
frame scalar potential is

U(ϕ) = M2(f − 1)2 . (5)

For f = 1 + ξϕ2 one finds U = M2ξ2ϕ4, which means that
λ = 4M2ξ2.

This idea also works for f = ϕ (Brans-Dicke theory), for
f = 1 + ξϕn etc. In the strong coupling limit, i.e. for f 2ϕ � f one
obtains the same result for all f ! The so-called conformal
attractors (Linde, Kalosh, . . . ).

Why this is so important? Because there may be higher order
non-renormalisable terms in the scalar potential. In principle we
don’t know the scale that suppressed them. With this mechanism
we don’t have to worry about them.
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Locally flat potentials

Let’s start from a general scalar theory with minimal coupling to
gravity (MA, Rubio), (MA, Lalak, Lewicki)

S =

∫
d4√−g

[
1

2
R +

1

2
(∂φ)2 − V (f (φ))

]
, (6)

where

f (φ) = ξ

n∑
k=1

λk φ
k , (7)

In general such a potential does not need to be flat anywhere and
therefore it is not suitable for inflation. We want to assume that V
(and therefore f (φ)) is at least locally flat ⇒ has a stationary
point at some φs . The maximal order of φs is n − 1, which gives

f (φ) =
ξ

n
(n λn)

−1
n−1

(
1−

(
1− (n λn)

1
n−1 φ

)n)
. (8)



Flat potentials for finite n
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Higgs/Starobinsky inflation as a maximally flat theory

What would happen if we require n→∞, i.e. infinitely flat
potential around the stationary point? For general form of λ the
f (φ) does not converge. But for

λn =
1

ξ

(
ξ

n

)n

(9)

one finds in the n→∞ limit

f (φ) = 1− e−ξφ (10)

so for V ∝ f 2 one obtains

V ∝ (1− e−ξφ)2 , (11)

which is exactly the Einstein frame potential of Starobinsky/Higgs
inflation in the strong coupling limit. Equivalence to α-attractors!
(MA, Rubio), (MA, Lalak, Lewicki)



Flat potentials and α-attractors

α-attractors - theory with kinetic term with a pole

(∂ψ)2(
1− ψ2

6α2

)2 . (12)

If you’d re-define the field to obtain a canonical kinetic term it
would appear, that any potential V (ψ) is stretched around the
pole, just like for V (f (ϕ)).

In fact you can use f (ϕ) as a scalar field, which creates a pole of
the kinetic term. In the n→∞ limit one finds

(∂ϕ)2 =
(∂f )2

ξ2(f − 1)2
, (13)

which after a field re-definition gives us exactly α-attractors!



Flat potentials and α-attractors

α-attractors - theory with kinetic term with a pole

(∂ψ)2(
1− ψ2

6α2

)2 . (12)

If you’d re-define the field to obtain a canonical kinetic term it
would appear, that any potential V (ψ) is stretched around the
pole, just like for V (f (ϕ)).

In fact you can use f (ϕ) as a scalar field, which creates a pole of
the kinetic term. In the n→∞ limit one finds

(∂ϕ)2 =
(∂f )2

ξ2(f − 1)2
, (13)

which after a field re-definition gives us exactly α-attractors!



Multi phase inflation from the U = M2(f − 1)2 ST theory

Solution to the problem of initial conditions for inflation!



DE from a lower plateau

There need to be ∼ 110 orders of magnitude of difference between
two plateaus in order to employ one of them as a source of
inflation and another as DE. For the scalar-tensor theory with flat
f (ϕ) and U = M2(f − 1)2 the ratio between the saddle point and
Starobinsky plateau is

Vs

M2
=

(
ξ

n

)2

⇒ ξ

n
∼ 10−55 necessary! (14)

On contrary, for the minimally coupled theory with

V = M2
(
1− e−f (ϕ)

)2m
one finds

Vs

M2
'
(
ξ

n

)2m

⇒ even
ξ

n
∼ 10−1 is ok for m ∼ 50

(15)
Much less fine tuning required!
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Conclusions

I Inflation - easy to obtain within a scalar or scalar-tensor
theory

I Local flatness can produce multi-phase inflation with features
of multi-field models

I Similar Idea creates a double plateau potential, which can be
used for dark energy

I No massive fine-tuning needed
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