Ahead of the Hunt: Small field models and GW—leading candidates

Ben-Gurion University of the Negev

Motivation

The hunt for Primordial Gravitational Waves

Alternatives to large field models.

Fundamental Physics?

Ben-Dayan, Brustein JCAP 1009, 007 (2010) Hotchkiss, Mazumdar, Nadathur JCAP 1202, 008 (2012)

<u>Outline</u>

- I. Recent Results
 - The model
 - Covering the plane of interest
 - Finding the most probable member
- II. Discrepancy between analytics and numericsIII. Summary and outlook

Wolfson, Brustein (2016) arXiv:1607.03740 And ongoing work

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

Results

5 Degree polynomial model

$$V(\phi) = V_0 \left(1 + \sum_{p=1}^{5} a_p \phi^p \right)$$

$$V(\phi) = V_0 \left(1 - \sqrt{\frac{r_0}{8}}\phi\right)$$

$$+\frac{\eta_0}{2}\phi^2 + \frac{\alpha_0}{3\sqrt{2r_0}}\phi^3 + a_4\phi^4 + a_5\phi^5$$

Ben-Dayan & Brustein JCAP 1009, 007 (2010)

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

Results

Why look at these models?

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

Results

5 Degree polynomial model

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

Results

5 Degree polynomial model

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

Results

5 Degree polynomial model

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

OOPS!... Something's wrong

Discrepancy between analytics & numerics

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

OOPS!... Something's wrong

Discrepancy between analytics & numerics

Inflationary perturbations from a potential with a step

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

Summary and outlook

Summary

- The model
- Covering the plane of interest
- Finding the most probable member
- II. Discrepancy between analytics and numerics
- III. Summary and outlook

Summary and outlook

where do we go from here?

- Go to higher tensor-to-scalar ratios.
- See what BICEP3 yields, and adjust.
- Find a better analytic expression from first principles?
- Quantify perturbations give better analytic tools

Questions?

Thank you!

