

Cosmological effects of Late Forming Dark Matter

Abir Sarkar Raman Research Institute Bangalore, India

CosPA-2016, 29.11.2016 ,University of Sydney, Sydney, Australia

The WIMP Miracle

Particles folling out of thermal equilibrium with the hot dense plasma of the early universe.

$$\Omega_\chi \propto rac{1}{<\sigma v>} \sim rac{m_\chi^2}{g_\chi^4}$$

For $m_{weak} \sim 100$ GeV and $g_{weak} \sim 0.6$

We have $\Omega_X \approx 0.1$ WIMP MIRACLE

A measure of relic dark matter density at present --> a golden opportunity to solve two problems in one go

Most Preferred candidate : WIMP: Describes the large scale features very well

START HUNTING FOR WIMP! Direct:

XENON100,CDMS-II,DAMA

Indirect: PAMELA, FermiLAT

10-3 XENON100 (2012) DAMA/Na — observed limit (90% CL) Section [cm²] Expected limit of this run: CoGeNT $\pm 1 \sigma$ expected DAMA/ $\pm 2 \sigma$ expected CDMS (2011) SIMPLE (2012) XENON10 2011 Cross COUPP (201. CRESST-II (2012) ZEPLIN-III WIMP-Nucleon XENON100 (2011) CDMS (2010) 10-45 6 7 8 910 2030 40 50 200 300 400 100 1000WIMP Mass $[GeV/c^2]$

THE RESULTS ARE IN CONFLICT WITH EACH OTHER!! (Hooper JCAP09(2013)035)

More problems with WIMPS!

Core cusp problem (De Blok; Arxiv :0910.3538v2)

The Missing Satellite Problem (Klypin et all ApJ 524,L19, 1999)

Doserved N_{lum} ~ 10

Too big to fail Problem (Boylan-Kochlin et al 2011)

Most massive subhaloes of Milky Way are too dense to host it's bright satellites

Time to look for non-WIMP candidates ?

WIMP CDM $k_c \sim 10^6 h / \text{Mpc}$ (Zaldarriaga & Loeb 2006)

Break in power due to free streaming

Problems with WDA

WDM with mass ~ keV → <u>too few subhaloes</u> (Polisensky Ricotti 2011)

Lyman-a forest flux power spectrum combined with hydrodynamical simulation (Viel et al 2013) $\rightarrow \underline{m}_{WDM} \ge 3.3 \text{ keV}$

Cusp-core problem is partially solved for $\underline{m_{WDM}}^{\sim}$ <u>O.1keV</u> (Maccio et al 2012) where the "too big too fail" problem is best solved at $\underline{m_{WDM}}^{\sim}$ <u>1.5-2</u> <u>keV</u> (Lovell et al 2012)

Break in power: but not too much Late Forming Dark Matter comes into play

Theoretical models of LFDM:

Fermionic : Das JPCS(2012)

PT @ RDE

Scalar: scalar field tightly coupled with massless neutrino (Das,Weiner PRD 2011)

Equation of state

Transition happens at z=z_f Nuggets behave as dark matter Behaves as dark energy

w=0, behaves as dark matter

2 parameters of interest : z_f, N_{eff}

Sharp break in power

Oscillations

Scales of the problem :

1) Affected by N_{eff} : k ~10⁻²

2) Smaller scales $\rightarrow k > 0.1 \rightarrow$ carries the signature of z_f

NEED OBSERVATIONAL DATA FOR BOTH SCALES!

marginalization

SDSS DR7

Lyman-a(Tegmark et all 2004)

ANGLO-AUSTRALIAN TELESCOPE TWO-DEGROE FIELD FRCILITY

PRIMARY RESULTS (AS, Das, Sethi JCAP 03(004)2015)

Limits on z_f : Using reconstructed Lyman-a power spectrum from Tegmark et al 2004

z_€ ~ 0.98 × 10⁵

Ultra Light Axions

Forms in the early universe by symmetry breaking and obtains it's initial condition (Marsh et al PRD 2010)

 $k_m \sim (m/10^{-33} eV)^{1/3} (100 km s^{-1})^{1/c} h Mpc^{-1}$

 $m_a > H$

 $\dot{\phi} + V'(\phi) = 0$

Coherrent oscillation behaves like CDM $10^{0} \\ 10^{-5} \\ (30) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-10}) \\ (10^{-20}) \\ (1$

Observational probe I: Effects on mass function (AS, Mondal, Das, Sethi, Bharadwaj and Marsh arxiv 1512.03325)

Observational probe I: Effects on Re-ionization (Contd.)

Number of ionized region is decreasing while their size is increasing Results : Constraints on z_f and m_a : Subject to x_{HI} =0.5 at z=8

Model	Parameter	$N_{\rm ion}$	Reionization
CDM	[1, 51]	24	\checkmark
LFDM	$z_f = 2.0 M$	47	\checkmark
	$z_f = 1.0 M$	102	\checkmark
	$z_f = 0.7 \mathrm{M}$	212	\checkmark
	$z_f = 0.4 \mathrm{M}$	1230	×
	$z_f = 0.2 \mathrm{M}$	No Haloes	×
ULA DM	$m_a = 3.7 \times 10^{-22} \mathrm{eV}$	61	\checkmark
	$m_a = 2.5 \times 10^{-22} \mathrm{eV}$	75	\checkmark
	$m_a = 1.2 \times 10^{-22} \mathrm{eV}$	134	\checkmark
	$m_a = 2.6 \times 10^{-23} \mathrm{eV}$	965	×
	$m_a = 2.0 \times 10^{-23} \mathrm{eV}$	No Haloes	×

Observational probe II: Effects on evolution of cosmic density of neutral hydrogen

For haloes with mass > 1×10^{10} Solar mass

Take home messages

- ✓ Dark matter can form much later than assumed for ACDM cosmology . In this work two models are used LFDM and ULA dark matter.
- ✓ Late formation of dark matter can cut the power at small scale but the amount of cut is lesser than WDM. Thus it can be a potential dark matter candidate to solve small scale problems simultaneously agreeing with large scale features.
- Cutting power at small scale can have significant effect on reionization and the evolution cosmological gas density.
- ✓ Analysis provide an upper bound on $z_f > 4 \times 10^5$ and $m_a > 2.6 \times 10^{-23}$ eV for getting $x_{HI} = 0.5$ at z=8, whereas evolution of collapsed gas fraction provides $z_f > 2 \times 10^5$ and $m_a > 10^{-23}$ eV.

