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Introduction

The LHC has resumed its search for Supersymmetry (SUSY) in run 2, but
direct evidence is still yet to be found. The search continues on!
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Introduction

The observation of a Higgs at 125 GeV has strengthened the need for
SUSY to appear at the weak-scale.

Tree-level higgs mass ∼ mZ .

Existence of electroweakinos (partners of EW gauge bosons).

A light neutralino - great for DM!

Composition of DM is important (Wino, Bino, Higgsino).
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Minimal SUSY mass hierarchy

Universal squark and 3rd gen slepton masses decoupled

125 GeV higgs finely-tuned

Gauginos/higgsinos at weak scale, protected by chiral symmetry

Light 1st and 2nd generation sleptons allowed by FCNC constraints
→ muon g-2
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The muon g − 2

Contributions to the SM:

Main theoretical uncertainty comes from LO Hadronic loop
contributions (quarks and gluons)

20.6× 10−10 < ∆aµ < 36.6× 10−10 (1σ)

12.6× 10−10 < ∆aµ < 44.6× 10−10 (2σ)

where
∆aµ ≡ aexpµ − aSMµ
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The muon g − 2 in SUSY

Contributions come from sneutrino-chargino and smuon-neutralino loop
diagrams
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The muon g − 2 in SUSY

Contribution from the MSSM:
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fχ and fN are loop functions:
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x2 − 4x + 3 + 2 ln(x)
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Explaining the muon g − 2 in the MSSM

The following particles are important in analyzing the (g − 2)µ in the
MSSM:

µ̃, ν̃µ, χ̃
0, χ̃± (1)

We can heavily constrain the muon g − 2 through slepton and
chargino searches at colliders

Smuons should be kept light (less than around 500 GeV) to increase
contribution to the (g − 2)µ

Dark Matter (Direct/Indirect) searches can constrain neutralino LSPs
in R-Parity conserving SUSY
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Constraints from Experiment

LEP constraints on chargino and Slepton masses:

ml̃L
,ml̃R

> 100 GeV (l = e, µ)

mχ̃±
1

> 105 GeV

Constraints on neutralino LSP as a DM candidate:

mχ̃0
1
> 30 GeV

Higgs mass from ATLAS/CMS:

123 < mh0 < 127 GeV

Higgs precision constraints (LEP, Tevatron and LHC)

Dark matter relic density (PLANCK 2013)

Ωh2 = 0.112± 0.006 (1σ)

WIMP-nucleon Spin-Independent Cross Section (LUX 2016)
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MSSM Parameter Scan

We calculate the (g − 2)µ and mass spectrum in the MSSM using
FeynHiggs-1.12.0:

Decoupled Squarks at 5 TeV (Ignore B-Physics constraints)

Stau sleptons mτ̃L = mτ̃R = 5 TeV

Gluino mass M3 ∼ 3 TeV

Trilinear coupling At in range |At | < 5 TeV (We keep |Xt/MS | < 2 to
avoid charge/colour-breaking minima)

Rest of higgs sector decoupled by setting mA0 = 2 TeV

Parameter scan range:

10 < tan(β) < 50,

|M1|, |M2|, |µ| < 2 TeV,

0.1 < ml̃L
,ml̃R

< 2 TeV, (l = e, µ)

Higgs mass calculated in FeynHiggs, precision constraints in
HiggsBounds-4.2.1. SUSY spectrum calculated in SPheno, MicrOmegas
to calculate DM relic density and SI WIMP-nucleon CS.
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Limits on neutralinos, charginos and smuons
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(N)LSP component

Parameters LSP NLSP
M1 > M2 > µ Higgsino Wino

M1 > µ > M2 Wino Higgsino

M2 > µ > M1 Bino Higgsino

µ > M2 > M1 Bino Wino

Constraints on χ0
1 vary for different compositions of Bino, Wino and

Higgsinos

It is well known that pure Bino-like DM relics are typically
overabundant (suppressed annihilation cross section), except in the
case where the bino co-annihilates with other sparticles

We can enhance the annihilation rate with a wino or higgsino
component in χ0

1

To avoid significant constraint, for any LSP abundance less than the
relic density, we assume additional DM component (possibly
axion-like DM)
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Relic Density, Ωh2
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WIMP-nucleon SI Cross Section
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Collider Simulation

We study constraints from multilepton + MET searches at the LHC.

We study electroweakinos at
√
s = 8 TeV LHC from

slepton/sneutrino and W/Z decays

Parameter sets that pass the previous collider and direct/indirect dark
matter searches are considered

Points are considered within the 2σ limit of ∆aµ

We also present the prospects for electroweakino searches with a 100
TeV collider

NLO events are simulated using MadGraph 5 interfaced with Pythia

6

These are passed to CheckMATE-1.2.2 to check exclusion limits at
95% CL
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Electroweakinos and sleptons at colliders

2`+ �E T (2 leptons + missing energy) 1

(a) via direct slepton decays (b) via sleptons/sneutrinos

1atlas conf 2013 049
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Electroweakinos and sleptons at colliders

3`+ �E T (3 leptons + missing energy) 2

(a) via sleptons/sneutrinos (b) via gauge bosons

2atlas 1402 7029
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Results in mχ0
1
−mχ±

1
plane
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Large µ case

It has been noted that one can explain the (g − 2)µ can be explained with
a dominant bino-smuon loop contribution.

This is enhanced with a large smuon left-right mixing.

Too large, and this can spoil the electroweak vacuum stability.
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Large µ case

We scan the extended region:

10 < tan(β) < 50,

|M1|, |M2| < 3 TeV,

10 < µ < 100 TeV,

0.1 < ml̃L
,ml̃R

< 2 TeV, (l = e, µ)

with staus decoupled at mτ̃L = mτ̃R = 10 TeV and Aτ = 0.

To explain (g − 2)µ within 2σ, we find upper limits of mχ̃0
1
< 2.4 TeV and

m˜̀
1
< 1.1 TeV.

The previous DM constraints severely limit this case, and so is not the
preferred scenario.
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100 TeV Analysis

The 3 lepton + MET events at 100 TeV are expected to have the largest
reach over the MSSM parameter space.
We scale the signal (S) and background (B) events for the 8 TeV analysis
by the ratio:

N100TeV = (σ100TeV/σ8TeV)(3000 fb−1/20.3 fb−1)N8TeV

Sources of background (B):

WZ , ZZ , H

ttV + ttZ

VVV

Reducible (t single/pair, WW , single W /Z with jets or photons)

We exclude events corresponding to:

S√
B + (βsysB)2

≥ 2

where βsys parameterizes the systematic uncertainty.
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Results for 100 TeV Analysis

Matthew Talia (University of Sydney) November 29th 2016 23 / 24



Conclusions

We studied constraints from direct/indirect measurements on the
MSSM with heavy squarks and light sleptons.

A 100 TeV collider could potentially probe almost the entire mass
range for electroweakinos in this model as an explanation for the
muon (g − 2)µ and dark matter.

One can further the analysis using monojet-like signals with greater
sensitivity to the degenerate mass region.

Our 100 TeV analysis can be considered a preliminary one, that can
be improved once the collider environment details are known (and/or
a public code is released).
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