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**The mass of the SM particles is provided
 by our „God Particle“ Higgs.

**But who is responsible for the mass of 
the Higgs?

It is the mass term   μ    in the
Higgs potential.

Without   μ     the SM would be 
scale invariant

at the classical level.
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We propose a scenario of 
scale genesis creating from nothing:
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We propose a scenario of 
scale genesis creating from nothing:

Dark Matter

and also 
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Scale Invariant Extension of the SM

We assume: 
Low-energy physics is responsible 
for the origin of low energy scales.
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If we start with a theory containing a mass 
from the beginning, we have no chance to 
explain its origin.



from DχSB  in QCD????

from DSSB in a hidden sector

98%  +  2%    (      Higgs)

The Cake of the Universe

MWIMP ≃few 100 GeV 

26.8%+4.9%=31.7% from DχSB+DSSB
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  Model

* mu problem, Kim Nieles

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg

potential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

U(1)A ! Z
6

 ̄ H†H

m⌘̃ > m
˜K > m⇡̃

< v� >' 10�5 GeV�2 >> 10�9 GeV�2

n2

f � 1

1

SMHidden 
sector

J.Kubo and M. Yamada,
PRD93 (2016) 075016;
PTEP (2015 ) 093B01. 

point represents the wide region of the parameter space, which is consistent with the dark

matter (DM) phenomenology. (In the model we will consider there exists a DM candidate

due to an unbroken flavor symmetry in the hidden sector.) In this region of the parameter

space the scale phase transition is strongly first-order.

In section IV we will calculate the spectrum of the corresponding GW background. There

are three production mechanisms of GWs at a strong first-oder phase transition, in which

the bubble nucleation grows and the GW is produced; collisions of bubble walls Ωcoll [73? –

78], magnetohydrodynamic (MHD) turbulence ΩMHD [79–85] and also sound waves Ωsw after

the bubble wall collisions [86–89]. Using the formulas given in these papers and especially

in [66], we will compute these individual contributions to the GW background spectrum

for a set of the benchmark parameters and find that Ωcoll and ΩMHD are several orders of

magnitude smaller than Ωsw. Finally we will compare our result with the sensitivity of

various GW experiments. We will find that the scale phase transition caused by the scalar-

bilinear condensation can be strong enough to produce the GW background that can be

observed by DECIGO [90].

Sect. V is devoted to a summary, and in the appendix we compute the field renormaliza-

tion factor.

II. THE BASIC IDEA AND THE PATH-INTEGRAL APPROACH

We consider a classical scale invariant extension of the SM, which has been studied in

[58, 59]. The basic assumption there is that the origin of the EW scale is a scalar-bilinear

condensation, which forms due a strong non-abelian gauge interaction in a hidden sector and

triggers the EW symmetry breaking through a Higgs portal coupling. The hidden sector is

described by an SU(Nc) gauge theory with the scalar fields Sa
i (a = 1, . . . , Nc, i = 1, . . . , Nf )

in the fundamental representation of SU(Nc). Accordingly, the total Lagrangian is given by

LH = −1

2
trF 2 + ([DµSi]

†DµSi)− λ̂S(S
†
iSi)(S

†
jSj)

− λ̂′
S(S

†
iSj)(S

†
jSi) + λ̂HS(S

†
iSi)H

†H − λH(H
†H)2 + L′

SM, (1)

where DµSi = ∂µSi − igHGµSi, Gµ is the matrix-valued SU(Nc) gauge field, and the SM

Higgs doublet field is denoted by H (the parenthesis stands for SU(Nc) invariant products.).

The last term, L′
SM, contains the SM gauge and Yukawa interactions. Note that the Higgs
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Higgs portal

S†S
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First of all I would like to thank you for inviting me. The talk
is based on the papers here. This one will be published within
a week or so. I will talk about Nambu-Goldstone Dark Matter
in a Scale Invariant Bright Hidden sector.

The basic idea behind is very similar to that of technicolor,
because I would like to generate the SM scale through dynamical
chiral symmetry breaking in a hidden sector, as you will see. I
gave basically the same talk in Okinawa last month, so for Oda
san it may be boring. Sorry.
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When preparing my talk in Okinawa I accidentally found an ar-
ticle by Frank Wilczek in two issues of Physics Today 1999 and
2000, with the title Mass without Mass. This is the first issue
appeared in 1999. At the beginning he said that the phrase
”Mass without mass” came from Wheeler. Wheeler is a famous
physicist in Gravity. Using this phrase Wheeler expresses his
hope that the fundamental equations of physics can explain the
origin of mass sometime. It was 1962, just after the discovery of
dynamical symmetry breaking. I do not know whether Wheeler
knew the discovery of dynamical symmetry breaking. As you
know dynamical symmetry breaking can create mass from noth-
ing.

1

S†S

Nc = #of the hidden colors

i, j = 1, . . . , Nf
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U(Nf) flavor symmetry

λS = λ′S = 1, Nf = 2, Nc = 6

λHS = 0

NJL Our approach

1. Integrating out the gauge fields.

2. Global symmetries

SU(3)L×SU(3)R×U(1)V×U(1)A SU(Nf)×Scale invariance

Anomalous

3. Mean fields and excitations

ψ̄i(1−γ5)ψj ∝ δijσ+itaji π
a S†

iSj = δijf + itaji φ
a

Condensate

4. Effective potential from

integrating out ψ integrating out δS around S̄

〈h〉 〈f〉

1
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At some low energy the SU(Nc) gauge interaction 
becomes so strong that the SU(Nc) invariant
scalar bilinear forms dynamically 
a U(Nf) invariant condensate:

which is nothing but  the        term.      μ

But this is a non-perturbative effect.

S†S

〈(S†
iSj)〉 = 〈

Nc∑

c=1
Sc†
i S

c
j〉 ∝ δij

Nc = #of the hidden colors

i, j = 1, . . . , Nf

LH = −1

2
trF 2 + iψ̄iγ

µDµψi

〈ψ̄iψj〉 = 〈
Nc∑

c=1
ψ̄c
iψ

c
i 〉 ∝ δij

LNJL = iψ̄iγ
µ∂µψi+2G Φ†Φ+. . . = iψ̄iγ

µ∂µψi+G
[
(ψ̄λaψ)2 − (ψ̄γ5λ

aψ)2 + . . .
]

LNJL = iψ̄iγ
µ∂µψi−

1

4G
(σaσa+φaφa)−

[
ψ̄λaσaψ − iψ̄γ5π

aλaψ + . . .
]

σa = −2G ψ̄λaψ , πa = −i2G ψ̄γ5λ
aψ

Φij = ψ̄i(1− γ5)ψj =
1

2
λaji ψ̄λ

a(1− γ5)ψ

U(3)L × U(3)R

SU(3)V × U(1)V × Z6

SU(3)L × SU(3)R → SU(3)V

1

Veff(σ) = 3



 σ̂
2

8G
− 3 I(σ̂)



 + Veff(0)

I(σ̂) =
Λ4

16π2



ln



1 +
σ̂2

Λ2



 − σ̂4

Λ4
ln



1 +
Λ2

σ̂2



 +
σ̂2

Λ2





ψ̄iψj = − 1

4G
δijσ̂

Λ = 1 GeV G = (0.5 GeV)−2

ψ̄i(1− γ5)ψj = − 1

4G
[δijσ̂ + λa(σ′a + iπa)]

Leff = ([∂µSi]
†∂µSi)− λS(S

†
iSi)(S

†
jSj)− λ′S(S

†
iSj)(S

†
jSi)

+λHS(S
†
iSi)H

†H − λH(H
†H)2 + L′

SM (1)

Veff(f, S̄, H)

S†
iSj = δijf + δijZ

1/2
σ σ + Z1/2

φ taji φ
a

〈σ〉 = 〈φa〉 = 0

ΩDMh
2 = ΩPLANCKh

2 with 2σ

2

J.K, K-S. Lim and M. Lindner,
PRL 113 (2014) 091604
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How to deal with  this
non-perturbative effect  ?

*Direct approach: Lattice gauge theory

In the case of dynamical chiral 
symmetry breaking, e.g.

Sigma models
. . . . 

We follow the idea of 

Nambu-Jona-Lasinio (NJL)

*Effective theory approach:
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U(Nf) flavor symmetry

λS = λ′S = 1, Nf = 2, Nc = 6

λHS = 0

NJL Our approach

1. Integrating out the gauge fields.

2. Global symmetries

SU(3)L×SU(3)R×U(1)V×U(1)A U(Nf)×Scale invariance

Anomalous

3. Mean fields and excitations

ψ̄i(1−γ5)ψj ∝ δijσ+itaji π
a S†

iSj ∝ δijf + itaji φ
a

Condensate

4. Effective potential from

integrating out ψ integrating out δS around S̄

〈h〉 〈f〉

1
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Scale symmetry breaking 
in the effective theory

Veff(σ) = 3



 σ̂
2

8G
− 3 I(σ̂)



 + Veff(0)

I(σ̂) =
Λ4

16π2



ln



1 +
σ̂2

Λ2



 − σ̂4

Λ4
ln



1 +
Λ2

σ̂2



 +
σ̂2

Λ2





ψ̄iψj = − 1

4G
δijσ

Λ = 1 GeV G = (0.5 GeV)−2

ψ̄i(1− γ5)ψj = − 1

4G
[δijσ̂ + λa(σ′a + iπa)]

Leff = ([∂µSi]
†∂µSi)− λS(S

†
iSi)(S

†
jSj)− λ′S(S

†
iSj)(S

†
jSi)

+λHS(S
†
iSi)H

†H − λH(H
†H)2 + L′

SM (1)

Veff(f, S̄, H)

S†
iSj = δijf + δijZ

1/2
σ σ + Z1/2

φ taji φ
a

〈σ〉 = 〈φa〉 = 0

ΩDMh
2 = ΩPLANCKh

2 with 2σ

TS ΩDM σSI

6

λS = λ′S = 1, Nf = 2, Nc = 6

λHS = 0

NJL Our approach

1. Integrating out the gauge fields.

2. Global symmetries

SU(3)L×SU(3)R×U(1)V×U(1)A SU(Nf)×Scale invariance

Anomalous

3. Mean fields and excitations

ψ̄i(1−γ5)ψj ∝ δijσ+itaji π
a S†

iSj = δijf + itaji φ
a

Condensate

4. Effective potential from

integrating out ψ integrating out δS around S̄

〈h〉 〈f〉
> 0

1

λS = λ′S = 1, Nf = 2, Nc = 6

λHS = 0

NJL Our approach

1. Integrating out the gauge fields.

2. Global symmetries

SU(3)L×SU(3)R×U(1)V×U(1)A SU(Nf)×Scale invariance

Anomalous

3. Mean fields and excitations

ψ̄i(1−γ5)ψj ∝ δijσ+itaji π
a S†

iSj = δijf + itaji φ
a

Condensate

4. Effective potential from

integrating out ψ integrating out δS around S̄

〈h〉 〈f〉
> 0

1

f   / µ

Veff / µ4

1/2
H

H
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* Higgs mass
m2

h0 = |〈H〉|2


16λ
2
H(NfλS + λ′S)

G
+

NcNfλ2HS

8π2





= 〈f〉NfλHS

2λH



16λ
2
H(NfλS + λ′S)

G
+

NcNfλ2HS

8π2





vb = 0.577

1 <∼ Γ/H4 <∼ eβ∆t with ∆t = β−1

β̃−1 = (β/H)−1 = T
d(S3/T )

dT

γ = 1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1. SE(T ) of a non-abelian GT

S3(T )/T of the effective theory

2. A strongly 1st order PT for f (i.e.〈f〉1/2/TS ∼ 1) is no
longer strongly 1st order for χ if γ is large.

Our assumptions:

1

Origin of the Higgs mass

= M2(S̄†
i S̄i) + λH(H

†H)2 −Nf (NfλS + λ′
S)f

2 +
NcNf

32π2
M4 ln

M2

Λ2
H

, (17)

where the divergence 1/ε̄ was removed by renormalization of the coupling constants in the

MS scheme and ΛH = µe3/4 is the scale at which the quantum correction vanishes if M =

ΛH . Note here that the scale ΛH is generated by quantum effect in the classically scale

invariant effective theory (3) and becomes the origin of the electroweak scale as it will be

seen below.

The minima of the effective potential (17) can be obtained from the solution of the gap

equations3

0 =
∂

∂S̄a
i

VMFA =
∂

∂f
VMFA =

∂

∂Hl
VMFA (l = 1, 2). (18)

The first equation (18) yields 〈S̄a
i 〉〈M2〉 = 0, which is satisfied in the following three cases:

(i) 〈S̄a
i 〉 $= 0 and 〈M2〉 = 0; (ii) 〈S̄a

i 〉 = 0 and 〈M2〉 = 0; (iii) 〈S̄a
i 〉 = 0 and 〈M2〉 $= 0.

The case (i) corresponds to the end-point solution [104] in which the effective potential has

a flat direction, i.e., Veff = 0 for f = H = 0. The gap equations in the case (i) imply the

relation 〈f〉 = 2λH/NfλHS〈H†H〉, and the effective potential at the minimum vanishes, i.e.,

〈VMFA〉 = 0 for an arbitrary value of S̄. In the case (ii) 〈VMFA〉 = 0 follows trivially. In the

case (iii), using the other gap equations, we obtain

|〈H〉|2 = v2h
2

=
NfλHS

G
Λ2

H exp

(
32π2λH

NcG
− 1

2

)
, 〈f〉 = f0 =

2λH

NfλHS
|〈H〉|2, (19)

〈M2〉 = M2
0 =

G

NfλHS
|〈H〉|2 (20)

at the minimum, where G ≡ 4NfλHλS−Nfλ2
HS+4λHλ′

S. The value of the effective potential

at this minimum is given by

〈VMFA〉 = −NcNf

64π2
Λ4

H exp

(
64π2λH

NcG
− 1

)
< 0. (21)

We therefore conclude that the case (iii) corresponds to the absolute minimum of the effective

potential (17) as far as G > 0 is satisfied. The Higgs mass at this level of approximation is

calculated to be

m2
h0 = |〈H〉|2

(
16λ2

H(NfλS + λ′
S)

G
+

NcNfλ2
HS

8π2

)
. (22)

3 A similar potential problem has been studied in [101–104]. But they did not study the classical scale

invariant case in detail, and moreover no coupling to the SM was introduced.
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NJL Our approach

1. Integrating out the gauge fields.

2. Global symmetries

SU(3)L×SU(3)R×U(1)V×U(1)A SU(Nf)×Scale invariance

Anomalous

3. Mean fields and excitations

ψ̄i(1−γ5)ψj ∝ δijσ+itaji π
a S†

iSj = δijf + itaji φ
a

Condensate

4. Effective potential from

integrating out ψ integrating out δS around S̄

〈h〉 〈f〉
> 0

λS = 0.145,λ′S = 2.045,λH = 0.15,λHS = 0.032,ΛH = 0.0621 TeV

Nf = 2, Nc = 6

1

In  the case of scale symmetry breaking:
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Since SU(Nf) is unbroken,
        is stable and can be a DM candidate.

Dark Matter phenomenology

Veff(σ) = 3



 σ̂
2

8G
− 3 I(σ̂)



 + Veff(0)

I(σ̂) =
Λ4

16π2



ln



1 +
σ̂2

Λ2



 − σ̂4

Λ4
ln



1 +
Λ2

σ̂2



 +
σ̂2

Λ2





ψ̄iψj = − 1

4G
δijσ̂

Λ = 1 GeV G = (0.5 GeV)−2

ψ̄i(1− γ5)ψj = − 1

4G
[δijσ̂ + λa(σ′a + iπa)]

Leff = ([∂µSi]
†∂µSi)− λS(S

†
iSi)(S

†
jSj)− λ′S(S

†
iSj)(S

†
jSi)

+λHS(S
†
iSi)H

†H − λH(H
†H)2 + L′

SM (1)

Veff(f, S̄, H)

S†
iSj = δijf + δijZ

1/2
σ σ + Z1/2

φ tajiφ
a

〈σ〉 = 〈φa〉 = 0

1
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Independent parameters : λS , λ′S , λSH , λH , ΛH

Input : vh = 246 GeV , mh = 126 GeV , ΩDMh
2 = 0.120± 0.005

S†S

〈(S†
iSj)〉 = 〈

Nc∑

c=1
Sc†
i S

c
j〉 ∝ δij

Nc = #of the hidden colors

i, j = 1, . . . , Nf

LH = −1

2
trF 2 + iψ̄iγ

µDµψi

〈ψ̄iψj〉 = 〈
Nc∑

c=1
ψ̄c
iψ

c
j〉 ∝ δij

LNJL = iψ̄iγ
µ∂µψi+2G Φ†Φ+. . . = iψ̄iγ

µ∂µψi+G
[
(ψ̄λaψ)2 − (ψ̄γ5λ

aψ)2
]
+. . .

LNJL = iψ̄iγ
µ∂µψi−

1

4G
(σaσa+πaπa)−ψ̄λaσaψ−iψ̄γ5π

aλaψ+. . .

σa = −2G ψ̄λaψ , πa = −i2G ψ̄γ5λ
aψ

Φij = ψ̄i(1− γ5)ψj =
1

2
λaji ψ̄λ

a(1− γ5)ψ

U(3)L × U(3)R

1

Tunneling provability (nucleation of a bubble) /s/cm3:

Γ ! T 4e−S3/T

1st order PT takes place if

Γ/H4 ∼ 1 → S3(T∗)/T∗ = 140 ∼ 150

SE(T ) ! S3(T )/T

The bubbles are O(3) symmetric.

Tunneling provability

At T = 0 ∼ e−SE (t → τ = it)
At T &= 0 ∼ e−SE (with a period τ = 1/T )

If 1/T << the bubble size,
the bubbles become a cylinder in d=4.

1. Latent heat/Radiation energy : α =
ε(T∗)

ρR(T∗)
2. Efficiency : κ (how much of ε(T∗) goes into ΩGW)

3. Wall velocity : vb
4. Duration of the 1st PT : β̃−1 = β−1/H−1

ΩGW(ν,α,κ, vb, β̃
−1)

Independent parameters : λS , λ′S , λHS , λH , ΛH = e3/4µH

4
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*Dark Matter annihilation into the SM particles

Relic abundance            and direct detection

Veff(σ) = 3



 σ̂
2

8G
− 3 I(σ̂)



 + Veff(0)

I(σ̂) =
Λ4

16π2



ln
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σ̂2
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 − σ̂4

Λ4
ln
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 +
σ̂2

Λ2





ψ̄iψj = − 1

4G
δijσ̂

Λ = 1 GeV G = (0.5 GeV)−2

ψ̄i(1− γ5)ψj = − 1

4G
[δijσ̂ + λa(σ′a + iπa)]

Leff = ([∂µSi]
†∂µSi)− λS(S

†
iSi)(S

†
jSj)− λ′S(S

†
iSj)(S

†
jSi)

+λHS(S
†
iSi)H

†H − λH(H
†H)2 + L′

SM (1)

Veff(f, S̄, H)

S†
iSj = δijf + δijZ

1/2
σ σ + Z1/2

φ taji φ
a

〈σ〉 = 〈φa〉 = 0

ΩDMh
2 = ΩPLANCKh

2 with 2σ

2

φα

φβ

h

h

+

φα

φβS S

h
+ · · ·SM

FIG. 1:
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φβ

h

h

+

φa

φb
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φ
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FIG. 4:

φ

φ

γ, Z, φ

γ, Z, φ

φ

φ

γ, Z, φ
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FIG. 3:

1
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FIG. 1: The spin-independent elastic cross section σSI of DM off the nucleon as a function of mDM

for Nf = 2, Nc = 6. The black solid line stands for the central value of the LUX upper bound [101]

with one (green) and two (yellow) σ bands, and the black dotted line indicates the sensitivity of

XENON1T [102, 103].

has to lie in an interval. Equivalently, too small or too large ΛH is inconsistent with the

DM constraints. The interval depends strongly on Nf , because ΩDMĥ2 is proportional to

N2
f − 1. This implies that the weakest constraint on λHS is given for Nf = 2. Furthermore,

the color degrees of freedom in the hidden sector is not completely free within our effective

field theory approach. This is due to the inverse propagator Γ(p2) for the DM, which can

have a zero for a positive p2 only if λ′
SNc is large enough (the zero of Γ(p2) defines the DM

mass). If we restrict ourselves to λ′
S
<∼ 2, we find that Nc > 4. On the other hand, the

results (at least for the DM phenomenology) for Nc = 5− 8 are very similar. The predicted

region for Nf = 2 and Nc = 6 is shown in Fig. 1. As we can see from Fig. 1 this result could

be tested by XENON1T [102, 103], whose sensitivity is indicated by the dotted line.

When discussing the scale phase transition at finite temperature and the GW background,

we will consider a benchmark point in our parameter space:

Nf = 2, Nc = 6, λS = 0.145, λ′
S = 2.045, λH = 0.15, λHS = 0.032, (31)

which yields

ΛH = 0.0621 TeV, mDM = 0.856 TeV, ΩDMĥ
2 = 0.122,

mh = 0.126 TeV, σSI = 5.12× 10−46 cm2. (32)
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 Phase Transitions (PT) and
Gravitational Waves (GW)

Two order parameters:

EWPT
Scale PT

EW Baryogenesis Gravitational wave BG
(Hogan,`83; Witten,`84;
....)

(Kuzmin+Rubakov+Shaposhnikov,`85; 
Klinkhamer+Manton,`84;
....)
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eLISA DECIGO

vb = 0.577

1 <∼ Γ/H4 <∼ eβ∆t with ∆t = β−1

β̃−1 = (β/H)−1 = T
d(S3/T )

dT

γ = 1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1. SE(T ) of a non-abelian GT

S3(T )/T of the effective theory

2. A strongly 1st order PT for f (i.e.〈f〉1/2/TS ∼ 1) is no
longer strongly 1st order for χ if γ is large.

Our assumptions:

1. Veff is OK.

2. The kinetic term for χ is canonically normalized
if γ ∼ O(1).

1

γ Tt [TeV] S3(Tt)/Tt α β̃ Ω̃swĥ2 ν̃sw [Hz]

0.5 0.300 149 0.070 3.7× 103 1.9× 10−13 0.37

1.0 0.311 145 0.062 7.0× 103 7.4× 10−14 0.73

2.0 0.316 146 0.059 13× 103 3.4× 10−14 1.4

TABLE I: Relevant quantities for the GW background spectrum for the set of the benchmark

parameters (31). The quantities α, β̃ and γ are defined in (43), (53),(46), respectively.

FIG. 5: The GW background spectrum. The doted lines are the four different sensitivities of

eLISA, where the labels (“C1, ”· · · ,“C4”) correspond to the configurations listed in Table 1 in [66].

The data sets of their configurations are taken from [119]. The dashed lines are sensitivities of

three different designs (“Pre-DECIGO”, “FP-DECIGO” and “Correlation”) of DECIGO [91]. The

parameter γ is defined in (46).

Using the formulas given in [66], we have computed these individual contributions to the

GW background spectrum for the set of the benchmark parameters (31) and found that

Ωcoll and ΩMHD are several orders of magnitude smaller than Ωsw. Therefore, we consider

here only the contribution to ΩGW from the sound wave [87–90]:

Ωsw(ν) ĥ
2 = Ω̃swĥ

2

(
ν

ν̃sw

)3( 7

4 + 3 (ν/ν̃sw)
2

)7/2

, (55)

where

Ω̃swĥ
2 = 2.65× 10−6vbβ̃

−1

(
κα

1 + α

)2(100

g∗

)1/3

(56)
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point represents the wide region of the parameter space, which is consistent with the dark

matter (DM) phenomenology. (In the model we will consider there exists a DM candidate

due to an unbroken flavor symmetry in the hidden sector.) In this region of the parameter

space the scale phase transition is strongly first-order.

In section IV we will calculate the spectrum of the corresponding GW background. There

are three production mechanisms of GWs at a strong first-oder phase transition, in which

the bubble nucleation grows and the GW is produced; collisions of bubble walls Ωcoll [73? –

78], magnetohydrodynamic (MHD) turbulence ΩMHD [79–85] and also sound waves Ωsw after

the bubble wall collisions [86–89]. Using the formulas given in these papers and especially

in [66], we will compute these individual contributions to the GW background spectrum

for a set of the benchmark parameters and find that Ωcoll and ΩMHD are several orders of

magnitude smaller than Ωsw. Finally we will compare our result with the sensitivity of

various GW experiments. We will find that the scale phase transition caused by the scalar-

bilinear condensation can be strong enough to produce the GW background that can be

observed by DECIGO [90].

Sect. V is devoted to a summary, and in the appendix we compute the field renormaliza-

tion factor.

II. THE BASIC IDEA AND THE PATH-INTEGRAL APPROACH

We consider a classical scale invariant extension of the SM, which has been studied in

[58, 59]. The basic assumption there is that the origin of the EW scale is a scalar-bilinear

condensation, which forms due a strong non-abelian gauge interaction in a hidden sector and

triggers the EW symmetry breaking through a Higgs portal coupling. The hidden sector is

described by an SU(Nc) gauge theory with the scalar fields Sa
i (a = 1, . . . , Nc, i = 1, . . . , Nf )

in the fundamental representation of SU(Nc). Accordingly, the total Lagrangian is given by
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†H)2 + L′

SM, (1)

where DµSi = ∂µSi − igHGµSi, Gµ is the matrix-valued SU(Nc) gauge field, and the SM

Higgs doublet field is denoted by H (the parenthesis stands for SU(Nc) invariant products.).

The last term, L′
SM, contains the SM gauge and Yukawa interactions. Note that the Higgs
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1 Introduce the auxiliary fields.

2 Integrate out the fluctuation of S to get:

= M2(S̄†
i S̄i) + λH(H

†H)2 −Nf (NfλS + λ′
S)f

2 +
NcNf

32π2
M4 ln

M2

Λ2
H

, (17)

where the divergence 1/ε̄ was removed by renormalization of the coupling constants in the

MS scheme and ΛH = µe3/4 is the scale at which the quantum correction vanishes if M =

ΛH . Note here that the scale ΛH is generated by quantum effect in the classically scale

invariant effective theory (3) and becomes the origin of the electroweak scale as it will be

seen below.

The minima of the effective potential (17) can be obtained from the solution of the gap

equations3

0 =
∂

∂S̄a
i

VMFA =
∂

∂f
VMFA =

∂

∂Hl
VMFA (l = 1, 2). (18)

The first equation (18) yields 〈S̄a
i 〉〈M2〉 = 0, which is satisfied in the following three cases:

(i) 〈S̄a
i 〉 $= 0 and 〈M2〉 = 0; (ii) 〈S̄a

i 〉 = 0 and 〈M2〉 = 0; (iii) 〈S̄a
i 〉 = 0 and 〈M2〉 $= 0.

The case (i) corresponds to the end-point solution [99] in which the effective potential has

a flat direction, i.e., Veff = 0 for f = H = 0. The gap equations in the case (i) imply the

relation 〈f〉 = 2λH/NfλHS〈H†H〉, and the effective potential at the minimum vanishes, i.e.,

〈VMFA〉 = 0 for an arbitrary value of S̄. In the case (ii) 〈VMFA〉 = 0 follows trivially. In the

case (iii), using the other gap equations, we obtain

|〈H〉|2 = v2h
2

=
NfλHS

G
Λ2

H exp

(
32π2λH

NcG
− 1

2

)
, 〈f〉 = f0 =

2λH

NfλHS
|〈H〉|2, (19)

〈M2〉 = M2
0 =

G

NfλHS
|〈H〉|2 (20)

at the minimum, where G ≡ 4NfλHλS−Nfλ2
HS+4λHλ′

S. The value of the effective potential

at this minimum is given by

〈VMFA〉 = −NcNf

64π2
Λ4

H exp

(
64π2λH

NcG
− 1

)
< 0. (21)

We therefore conclude that the case (iii) corresponds to the absolute minimum of the effective

potential (17) as far as G > 0 is satisfied. The Higgs mass at this level of approximation is

calculated to be

m2
h0 = |〈H〉|2

(
16λ2

H(NfλS + λ′
S)

G
+

NcNfλ2
HS

8π2

)
. (22)

3 A similar potential problem has been studied in [96–99]. But they did not study the classical scale

invariant case in detail, and moreover no coupling to the SM was introduced.
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where ta (a = 1, . . . , N2
f − 1) are the SU(Nf ) generators in the fundamental representation.

Then the path-integral can be written as
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Note that the Euler–Lagrange equations for the auxiliary fields f and φa
0 become f =
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iSi)/Nf and φa

0 = 2(S†
i t

a
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where the divergence 1/ε̄ was removed by renormalization of the coupling constants in the

MS scheme and ΛH = µe3/4 is the scale at which the quantum correction vanishes if M =

ΛH . Note here that the scale ΛH is generated by quantum effect in the classically scale

invariant effective theory (3) and becomes the origin of the electroweak scale as it will be

seen below.
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a flat direction, i.e., Veff = 0 for f = H = 0. The gap equations in the case (i) imply the

relation 〈f〉 = 2λH/NfλHS〈H†H〉, and the effective potential at the minimum vanishes, i.e.,

〈VMFA〉 = 0 for an arbitrary value of S̄. In the case (ii) 〈VMFA〉 = 0 follows trivially. In the

case (iii), using the other gap equations, we obtain
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We therefore conclude that the case (iii) corresponds to the absolute minimum of the effective

potential (17) as far as G > 0 is satisfied. The Higgs mass at this level of approximation is

calculated to be
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3 A similar potential problem has been studied in [96–99]. But they did not study the classical scale

invariant case in detail, and moreover no coupling to the SM was introduced.
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where the divergence 1/ε̄ was removed by renormalization of the coupling constants in the

MS scheme and ΛH = µe3/4 is the scale at which the quantum correction vanishes if M =

ΛH . Note here that the scale ΛH is generated by quantum effect in the classically scale

invariant effective theory (3) and becomes the origin of the electroweak scale as it will be
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First of all I would like to thank you for inviting me. The talk
is based on the papers here. This one will be published within
a week or so. I will talk about Nambu-Goldstone Dark Matter
in a Scale Invariant Bright Hidden sector.

The basic idea behind is very similar to that of technicolor,
because I would like to generate the SM scale through dynamical
chiral symmetry breaking in a hidden sector, as you will see. I
gave basically the same talk in Okinawa last month, so for Oda
san it may be boring. Sorry.
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+two other gap equations

(End point solution of Bardeen+Moshe,’83)

<Veff>=0
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where the divergence 1/ε̄ was removed by renormalization of the coupling constants in the

MS scheme and ΛH = µe3/4 is the scale at which the quantum correction vanishes if M =

ΛH . Note here that the scale ΛH is generated by quantum effect in the classically scale

invariant effective theory (3) and becomes the origin of the electroweak scale as it will be

seen below.
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We therefore conclude that the case (iii) corresponds to the absolute minimum of the effective
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0 =
∂

∂S̄a
i

VMFA =
∂

∂f
VMFA =

∂

∂Hl
VMFA (l = 1, 2). (18)

The first equation (18) yields 〈S̄a
i 〉〈M2〉 = 0, which is satisfied in the following three cases:

(i) 〈S̄a
i 〉 $= 0 and 〈M2〉 = 0; (ii) 〈S̄a

i 〉 = 0 and 〈M2〉 = 0; (iii) 〈S̄a
i 〉 = 0 and 〈M2〉 $= 0.
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G
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− 1

2

)
, 〈f〉 = f0 =

2λH

NfλHS
|〈H〉|2, (19)

〈M2〉 = M2
0 =

G

NfλHS
|〈H〉|2 (20)
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S. The value of the effective potential
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− 1
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calculated to be
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H(NfλS + λ′
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G
+

NcNfλ2
HS

8π2

)
. (22)

3 A similar potential problem has been studied in [96–99]. But they did not study the classical scale

invariant case in detail, and moreover no coupling to the SM was introduced.
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FIG. 2. Left: The scale phase transition for case (i), in which the hidden sector is disconnected from

the SM. The (dimensionless) critical temperature is TS/ΛH ! 7.0. Right: The (dimensionless) potential

Veff/Λ4
H against f1/2/ΛH for T/ΛH = 7.1 (red dashed), TS/ΛH (black), 6.9 (green dash-dotted). The

potential energy density at the origin is subtracted from Veff so that the form of the potential for different

temperatures can be compared.

Finally, the ring contribution from the gauge bosons is [63]

VRING= − T

12π

(
2a3/2g +

1

2
√
2

(
ag + cg − [(ag − cg)

2 + 4b2g]
1/2
)3/2

+
1

2
√
2

(
ag + cg + [(ag − cg)

2 + 4b2g]
1/2
)3/2 − 1

4
[g2h2]3/2 − 1

8
[(g2 + g′2)h2]3/2

)
, (36)

where

ag =
1

4
g2h2 +

11

6
g2T 2, bg = −1

4
gg′h2 , cg =

1

4
g′2h2 +

11

6
g′2T 2. (37)

The critical temperatures of the scale phase and EW phase transitions (which we denote by

TS and TEW, respectively) can be different. If TS and TEW are distant from each other, two

phase transitions cannot influence each other much. In the case that they are close or equal,

i.e. TC ≡ TS = TEW, two phase transitions can influence each other. In fact, depending on

the choice of the parameter values, these different cases can be realized in our model. Below

we consider some representative examples.

(i) Scale phase transition with Nf = 1, Nc = 6

First we consider the case with λHS = 0, i.e., no connection between the hidden sector and

the SM sector. We choose:

Nf = 1, Nc = 6, λS + λ′
S = 2.083, (38)
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The portal is closed.

Scale PT  is
1st order.

T
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(i) Scale phase transition with Nf = 1, Nc = 6
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where we will use the same Nf and Nc as well as the same parameter values for λS and λ′
S

when discussing case (ii) with the SM connected. (If Nf = 1, only the linear combination

λS + λ′
S is an independent coupling.) In Fig. 2 (left) we show 〈f〉1/2/T against T/ΛH . We

see from the figure that the scale phase transition is first order with TS/ΛH # 7.0. The

right panel shows the form of the potential for T/ΛH = 7.1 (red dashed), TS/ΛH (black),

6.9 (green dash-dotted). As we will see below, the strong first-order scale phase transition

in the hidden sector can infect the EW phase transition.

The existence of the first-order phase transition observed here, was predicted in [71]. In

our analysis we have assumed (and will throughout assume) that 〈Sa
i 〉 = 0. However, within

the framework of the effective theory (even if we assume classical scale invariance), there is

no reason to prefer 〈f〉 = 〈Sa
i 〉 = 0 to the flat direction with 〈Sa

i 〉 $= 0 [71] (mentioned at

the end of Sect. III) at T > TS. We discard this problem here, because we assume that the

local SU(Nc) gauge symmetry of (1) remains unbroken even at T > TS.

(ii) Scale and EW phase transitions at TC ≡ TS = TEW

Now we couple the hidden sector with the SM sector. We use the same parameter values as

those given in (38) along with

λHS = 0.296, λH = 0.208. (39)

The input parameters (38) with (39) yield M = 0.410 TeV, mσ = 0.796 TeV, ΛH =

0.019 TeV, and mh = 0.125 TeV. 6 In Fig. 3 we show 〈f〉1/2/T (red) and 〈h〉/T (blue)

against T , and we can see that the scale and EW phase transitions occur at the same critical

temperature TC ≡ TS = TEW # 0.135 TeV, where the dimensionless critical temperature

TC/ΛH # 7.0 is basically the same as that of case (i) with the SM decoupled. This shows

that the strong first-order scale phase transition in the hidden sector can indeed infect the

EW phase transition.

We next show the form of the potential at T = TC. The curves in Fig. 4 (left) are the

intersections of the potential Veff with the surfaces defined by

0 = h− kf 1/2 (40)

for k = 1.1 (red), k = 0.95 (black dashed), k = 0.69 (black), k = 0.4 (black dash-dotted)

and k = 0.1 (blue), where their intersections with the f 1/2/TC − h/TC plane are shown

6 Due to a relatively large λHS there is a relatively large mixing between σ and the Higgs h with a mixing

angel of ∼ 0.2, which is still consistent with the LHC constraint at 95% CL [83]. This mixing has a

negative effect on mh, leading to a large λH .

Strong 1st-order
EW and Scale PT

No DM
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1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1. SE(T ) of a non-abelian GT

S3(T )/T of the effective theory

2. A strongly 1st order PT for f (i.e.〈f〉1/2/TS ∼ 1) is no
longer strongly 1st order for χ if γ is large.

Our assumptions:

1. Veff is OK.

2. The kinetic term for χ is canonically normalized if γ ∼
O(1).

S3 = 4π
∫
drr2L3(ϕB(r, T ), T )

dϕB(r, T )/dr|r=0 = 0 and lim
r→∞ϕB(r, T ) = 0

Tunneling provability (nucleation of a bubble) /s/cm3:

Γ ' T 4e−S3/T

1st PT takes place if Γ/H4 ∼ 1 → S3(T∗)/T∗ = 140 ∼ 150

1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1. SE(T ) of a non-abelian GT

S3(T )/T of the effective theory

2. A strongly 1st order PT for f (i.e.〈f〉1/2/TS ∼ 1) is no
longer strongly 1st order for χ if γ is large.

Our assumptions:

1. Veff is OK.

2. The kinetic term for χ is canonically normalized if γ ∼
O(1).

S3 = 4π
∫
drr2L3(ϕB(r, T ), T )

dϕB(r, T )/dr|r=0 = 0 and lim
r→∞ϕB(r, T ) = 0

Tunneling provability (nucleation of a bubble) /s/cm3:

Γ ' T 4e−S3/T

1st PT takes place if Γ/H4 ∼ 1 → S3(T∗)/T∗ = 140 ∼ 150

1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1. SE(T ) of a non-abelian GT

S3(T )/T of the effective theory

2. A strongly 1st order PT for f (i.e.〈f〉1/2/TS ∼ 1) is no
longer strongly 1st order for χ if γ is large.

Our assumptions:

1. Veff is OK.

2. The kinetic term for χ is canonically normalized if γ ∼
O(1).

S3 = 4π
∫
drr2L3(ϕB(r, T ), T )

dϕB(r, T )/dr|r=0 = 0 and lim
r→∞ϕB(r, T ) = 0

Tunneling provability (nucleation of a bubble) /s/cm3:

Γ ' T 4e−S3/T

1st PT takes place if Γ/H4 ∼ 1 → S3(T∗)/T∗ = 140 ∼ 150

1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1. SE(T ) of a non-abelian GT

S3(T )/T of the effective theory

2. A strongly 1st order PT for f (i.e.〈f〉1/2/TS ∼ 1) is no
longer strongly 1st order for χ if γ is large.

Our assumptions:

1. Veff is OK.

2. The kinetic term for χ is canonically normalized
if γ ∼ O(1).

S3 = 4π
∫
drr2L3(ϕB(r, T ), T )

dϕB(r, T )/dr|r=0 = 0 and lim
r→∞ϕB(r, T ) = 0

Tunneling provability (nucleation of a bubble) /s/cm3:

Γ ' T 4e−S3/T

1st PT takes place if Γ/H4 ∼ 1 → S3(T∗)/T∗ = 140 ∼ 150

1

(Z=0 at the tree level.)

??!

m
2h
0

=
|〈H

〉| 2

16λ

2H
(N

f λ
S
+
λ
′S )

G
+

N
c N

f λ
2H
S

8π
2



=
〈f〉 N

f λ
H
S

2λ
H


16λ

2H
(N

f λ
S
+
λ
′S )

G
+

N
c N

f λ
2H
S

8π
2



v
b
=

0.577

1
<∼

Γ
/H

4
<∼

e
β
∆
t
w
ith

∆
t
=
β
−
1

β̃
−
1
=

(β
/H

) −
1
=

T
d(S

3 /T
)

dT

γ
=

1

L
3
=

14f
Z

−
1∂

i f
∂
i f

+
V
eff (f

,T
)

f
=
γ
χ
2

(d
im

[χ
]
=

1)

=
γ
Z

−
1∂

i χ
∂
i χ

+
V
eff (γ

χ
2,T

)

S
eriou

s
p
rob

lem
s

1.
S
E
(T

)
of

a
n
on

-ab
elian

G
T

S
3 (T

)/T
of

th
e
eff

ective
th
eory

2.
A

stron
gly

1st
ord

er
P
T

for
f

(i.e.〈f〉
1/2/T

S
∼

1)
is

n
o

lon
ger

stron
gly

1st
ord

er
for

χ
if
γ
is
large.

1

J.Kubo and M. Yamada,
arXiv:1610.02241. 



The latent heat with
just below TS.

time has to be sufficiently short compared with the expansion of the Universe, and it is clear

that the more latent heat is released, the larger ΩGW can become. In the following two

subsections we will discuss these issues.

A. Latent heat

Given the effective potential Veff in (33), it is straightforward to compute the latent heat

ε(T ) at T < TS:

ε(T ) = −Veff(fB(T ) , T ) + T
∂Veff(fB(T ) , T )

∂T
, (42)

where fB(T ) is 〈f〉 at T , and we have set h equal to zero, because 〈h〉 = 0 for T > TEW .

The ratio of the released vacuum density ε(Tt) to the radiation energy density is

α =
ε(Tt)

ρtrad
, (43)

which is one of the basic parameters entering into ΩGW, where Tt (defined in (49)) is the

temperature just below TS, and ρtrad = g∗(Tt) π2T 4
t /30 with g∗ = 106.75.

Since the latent heat in the lattice SU(3)c gauge theory has been calculated [123], it may

be worthwhile to compare our result with that of [123]. To this end, we calculate the latent

heat in the mean-field approximation with Nc = 3, Nf = 1 and λHS = λH = 0. In this case

the dynamical scale symmetry breaking (at T = 0) occurs for λS + λ′
S ≥ 2.8, and therefore,

we calculate the latent heat ε(T ) just below the critical temperature for λS + λ′
S = 3, 4 and

5, respectively. We find:

ε(T )

T 4
=






0.70

0.55

0.43

for λS + λ′
S =






3

4

5

. (44)

These results should be compared with ε(T ) /T 4 = 0.75± 0.17 of [123]. Though this lattice

result is obtained in the theory without matter field, we see that the values (44) are com-

parable in size to the lattice result. This is a good news, because the scale phase transition

and the deconfinement phase transition appear at the same time, and the latent heat is

proportional to the change of entropy which we do not expect to change a lot if one scalar

field is included or not.
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


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
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These results should be compared with ε(T ) /T 4 = 0.75± 0.17 of [123]. Though this lattice

result is obtained in the theory without matter field, we see that the values (44) are com-

parable in size to the lattice result. This is a good news, because the scale phase transition

and the deconfinement phase transition appear at the same time, and the latent heat is

proportional to the change of entropy which we do not expect to change a lot if one scalar

field is included or not.
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(Shirogane, Ejiri, Iwami,Kanaya+Kitazawa, 2016)

The lattice QCD value:
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ｖ ｖ DECIGO : pre-conceptual design 

Orbit  :   record disk around the sun 
Constellation : 
          4  interferometer unitｓ 
                      2 overlap units       :  cross correlation for stochastic background 
                      2 separated units   :  increase angular resolution 

sun 

Earth 

Record disk correlation 

angular resolution 
ICSO2014 (Oct,8,2014@Tenerife, Spain) 

ｖ ｖ DECIGO : pre-conceptual design 

Differential Fabry-Perot interferometer 

Strain sensitivity 2x10-24 /√Hz@0.1Hz          

• 3 S/C formation flight 
• 3 Fabry-Perot interferometer 
                L=1000 km 
                F=10 
• mirrors   w=100kg.  
                      Φ=1m 
• Drag-free control 
• laser power   10W@0.5 m 
 

Arm-cavity 
1000 km 

mirror 

Light source 

Photo detector 

Drag-free 
spacecraft 

DECIGO  (DECi-hertz Interferometer Gravitational-wave Observatory )  2027~




