

Probing physics behind the electroweak symmetry breaking at future gravitational wave interferometers and future collider experiments Mitsuru Kakizaki (University of Toyama)

The 13th International Symposium on Cosmology and Particle Astrophysics (CosPA 2016)

November 28, 2016 @ University of Sydney

- Collaborators:
 - Katsuya Hashino, Shinya Kanemura (University of Toyama), Pyungwon Ko, Toshinori Matsui (KIAS)
- References:
 - MK, Kanemura, Matsui, PRD92, no.11,115007 (2015), arXiv:1509.08394
 - Hashino, MK, Kanemura, Matsui, PRD94, no.1, 015005 (2016), arXiv:1604.02069
 - Hashino, MK, Kanemura, Ko and Matsui, arXiv:1609.00297

Motivation

Discovery of the 125 GeV Higgs boson h at the CERN LHC

 The Standard Model (SM) has been established as a low-energy effective theory below O(100) GeV

This is not the end of the story

The Higgs sector is still vague

- Guiding principle?
- Shape of the Higgs potential (multiplets, symmetries, ...)?
- Dynamics behind the electroweak symmetry breaking (EWSB)?

Phenomena beyond the SM (BSM) reported

- Baryon asymmetry of the Universe (BAU) Cosmic inflation

Existence of dark matter

Neutrino oscillations

Higgs sector = Window to New Physics

The structure of the Higgs sector is related to BSM models

Information on new physics can be obtained by investigating the properties of the Higgs sector

Electroweak baryogenesis (EWBG) and Higgs boson couplings

Sakharov's conditions for BAU

1st OPT

- 1. Baryon number violation Sphaleron
- 2. C and CP violation _ Extended Higgs sector
- 3. Departure from thermal equilibrium
 - Strongly first order phase transition (1st OPT): $\varphi_c/T_c \gtrsim 1$

SM Higgs sector w/ one doublet:

 Electroweak phase transition (EWPT): is NOT of 1st order for $m_h=125~{\rm GeV}$

e.g. Two Higgs doublet model (2HDM)

$$\varphi_c/T_c \gtrsim 1 \longrightarrow \Delta \lambda_{hhh}/\lambda_{hhh}^{\rm SM} \gtrsim 10\%$$

 $\Delta \lambda_{hhh}/\lambda_{hhh}^{\rm SM}\gtrsim 10\%$ [Kanemura, Okada, Senaha (2005)] Linear Collider (11.0) International Linear Collider (ILC) 1 TeV can measure λ_{hhh} at 10% accuracy

[Fujii et al. (2015)]

EWBG can be tested at future colliders

Potential barrier True vacuum

Gravitational waves (GWs) as a probe of EWPT

Ground-based interferometers (aLIGO, KAGRA, aVirgo)

- Targets: GWs from binary systems, supernovae, ...
- aLIGO made the first direct observation of GWs
 - New era of GW astronomy

[LIGO and Virgo (2016)]

Future space-based interferometers (eLISA, DECIGO, BBO)

- Sensitive to GWs from the early Universe (Strongly 1st OPT, cosmic inflation, ...)
 - New era for fundamental physics

Goal of our work:

• To investigate testability of models of EWSB using the synergy between the measurements of the GWs, Higgs boson couplings κ_X and the hhh coupling

Model 1: Models with additional singlet scalars (without CSI)

Idea:

[MK, Kanemura, Matsui (2015)]

- To generally handle strongly 1st OPT via thermal loop, N isosinglet scalars S_i ($i=1,\cdots,N$) are introduced
- For simplicity, O(N) symmetry is imposed

Tree-level scalar potential: $V_0(\Phi, \vec{S}) = V_{\rm SM}(\Phi) + \frac{\mu_S^2}{2} |\vec{S}|^2 + \frac{\lambda_S}{4} |\vec{S}|^4 + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 |\vec{S}|^2$

Singlet scalar boson mass: $m_S^2 = \mu_S^2 + \frac{\lambda_{\Phi S}}{2}v^2$

Triple Higgs boson coupling:

$$\lambda_{hhh}^{O(N)} = \frac{3m_h^2}{v} \left\{ 1 - \frac{1}{\pi^2} \frac{m_t^4}{v^2 m_h^2} + \frac{N}{12\pi^2} \frac{m_S^4}{v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \right\} \sum_{k=0}^{\infty} \frac{m_k^4}{v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \right\} \sum_{k=0}^{\infty} \frac{m_k^4}{v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \right) \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \left(1 - \frac{\mu_S^2}{m_S^2}$$

Finite temperature effective potential (high temperature expansion):

$$V_{\text{eff}}(\varphi, T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$$

$$\frac{\varphi_c}{T_c} \propto E = \frac{1}{12\pi v^3} \left[6m_W^3 + 3m_Z^3 + Nm_S^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right) \cdot \left(1 + \frac{3\mu_S^2}{2m_S^2} \right) \right] 100$$

Non decoupling loop effect from additional scalars 1

Model 2: CSI models with additional singlet scalars

dea [Hashino, Kanemura, Orikasa (2015)]

- Mass parameters are absent in the original Lagrangian due to Classical Scale Invariance (CSI) [Bardeen (1995)]
- EWSB is directly caused by thermal loop effects

Tree-level scalar potential

$$V_0(\Phi, \vec{S}) = \frac{\lambda}{2} |\Phi|^4 + \frac{\lambda_S}{4} |\vec{S}|^4 + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 |\vec{S}|^2$$

Singlet scalar boson mass

$$Nm_S^4 = 8\pi^2 v^2 m_h^2 - 6m_W^4 - 3m_Z^4 + 12m_t^4$$

Triple Higgs boson coupling

$$\frac{\Delta \lambda_{hhh}}{\lambda_{hhh}^{\rm SM(tree)}} = \frac{\lambda_{hhh}}{\lambda_{hhh}^{\rm SM(tree)}} - 1 = \frac{2}{3} \quad \text{independent of} \ \ N$$

[Hashino, Kanemura, Orikasa (2015)]

Model 3: Higgs singlet model

Idea

[Hashino, MK, Kanemura, Ko, Matsui (2016)]

ullet To investigate EWPT caused by Higgs boson mixing by taking the extended model with a singlet Higgs boson S

Tree-level Higgs potential

$$V_0 = -\mu_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu_S'}{3} S^3 + \frac{\lambda_S}{4} S^4$$

Higgs boson couplings to SM particles $\kappa_X = \frac{g_{hXX}}{g_{hXX}|_{\text{SM}}}$

$$\kappa = \kappa_V = \kappa_F = \cos \theta$$

Triple Higgs boson couplings (effective potential approach)

$$\lambda_{hhh}^{\text{HSM}} = c_{\theta}^{3} \left\langle \frac{\partial^{3} V_{\text{eff},T=0}}{\partial \varphi_{\Phi}^{3}} \right\rangle + c_{\theta}^{2} s_{\theta} \left\langle \frac{\partial^{3} V_{\text{eff},T=0}}{\partial \varphi_{\Phi}^{2} \partial \varphi_{S}} \right\rangle + c_{\theta} s_{\theta}^{2} \left\langle \frac{\partial^{3} V_{\text{eff},T=0}}{\partial \varphi_{\Phi} \partial \varphi_{S}^{2}} \right\rangle + s_{\theta}^{3} \left\langle \frac{\partial^{3} V_{\text{eff},T=0}}{\partial \varphi_{S}^{3}} \right\rangle$$

Finite temperature effective potential

(high temperature expansion; one field approximation)

$$V_{\mathrm{eff}} = D(T^2 - T_0^2) \varphi^2 - (ET - e) \varphi^3 + \frac{\lambda(T)}{4} \varphi^4$$
 $\longrightarrow \frac{\varphi_c}{T_c} = \frac{2E}{\lambda} (1 - \frac{e\lambda}{ET})$ Effects from the Higgs boson mixing

Important quantities for GW spectrum

Bubble nucleation

Bubbles collision

Sources of GWs

- 1. Collision of bubble walls
- 2. Compression wave of plasma
- 3. Plasma turbulence
- GW spectrum is derived from finite temperature effective potential $V_{\rm eff}$

Bubble nucleation rate per unit volume per unit time:

$$\Gamma(t) = \Gamma_0(t) \exp[-S_E(t)]$$
 $S_E(T) = S_3(T)/T$ $S_3 = \int d^3r \left[\frac{1}{2}(\vec{\nabla}\varphi_b)^2 + V_{\text{eff}}(\varphi_b, T)\right]$

Transition temperature
$$T_t$$
: $\frac{\Gamma}{H^4}\Big|_{T=T_t} \simeq 1$ $\Longrightarrow \frac{S_3(T_t)}{T_t} = 4\ln(T_t/H_t) \simeq 140$

Released false vacuum energy (Latent heat)

$$\epsilon(T) = -V_{\text{eff}}(\varphi_B(T), T) + T \frac{\partial V_{\text{eff}}(\varphi_B(T), T)}{\partial T} \quad \text{Normalized parameter: } \alpha = \frac{\epsilon(T_t)}{\rho_{\text{rad}}(T_t)}$$

Inverse of the duration of phase transition

$$\beta = -\left.\frac{dS_E}{dt}\right|_{t=t_t} \simeq \left.\frac{1}{\Gamma}\frac{d\Gamma}{dt}\right|_{t=t_t} \qquad \text{Normalized parameter: } \tilde{\beta} = \frac{\beta}{H_t}$$
 November 28, 2016

GW spectrum

- Complicated numerical simulations are necessary
- Approximate fitting formula are available [Caprini et al. (2015)]

Collision of bubble walls (Envelope approximation):

$$\widetilde{\Omega}_{\rm env} h^2 \simeq 1.67 \times 10^{-5} \times \left(\frac{0.11 v_b^3}{0.42 + v_b^2}\right) \widetilde{\beta}^{-2} \left(\frac{\kappa_\phi \alpha}{1 + \alpha}\right)^2 \left(\frac{100}{g_*^t}\right)^{1/3}$$

$$\widetilde{f}_{\rm env} \simeq 1.65 \times 10^{-5} \text{ Hz} \times \left(\frac{0.62}{1.8 - 0.1 v_b + v_b^2}\right) \widetilde{\beta} \left(\frac{T_t}{100 \text{ GeV}}\right)$$

Sound waves (Compression waves of thermal plasma):

$$\widetilde{\Omega}_{\rm sw}h^2 \simeq 2.65 \times 10^{-6} v_b \widetilde{\beta}^{-1} \left(\frac{\kappa_v \alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*^t}\right)^{1/3} \qquad \widetilde{f}_{\rm sw} \simeq 1.9 \times 10^{-5} \; {\rm Hz} \frac{1}{v_b} \widetilde{\beta} \left(\frac{T_t}{100 \; {\rm GeV}}\right)$$

Magnetohydrodynamic (MHD) turbulence:

$$\widetilde{\Omega}_{\rm turb}h^2 \simeq 3.35 \times 10^{-4} v_b \widetilde{\beta}^{-1} \left(\frac{\epsilon \kappa_v \alpha}{1+\alpha}\right)^{3/2} \left(\frac{100}{g_*^t}\right)^{1/3} \qquad \widetilde{f}_{\rm turb} \simeq 2.7 \times 10^{-5} \; {\rm Hz} \frac{1}{v_b} \widetilde{\beta} \left(\frac{T_t}{100 \; {\rm GeV}}\right)$$

ullet v_b : wall velocity ullet κ_ϕ , κ_v and $\epsilon=0.05$: efficiency factors

November 28, 2016 Mitsuru KAKIZAKI

Model A vs. Model B: Predicted values of α and $\tilde{\beta}$ in models with singlet scalars with and without CSI

Condition for strongly 1st OPT

O(N) models without CSI

• α and β to be determined by GW observation are useful measures in determining N and m_S

CSI O(N) models

 Scale invariance is violated at finite temperatures

 $\stackrel{\alpha}{\longrightarrow} \alpha$ and $\tilde{\beta}$ depend on N though λ_{hhh} is common

November 28, 2016

Mitsuru KAKIZAKI

Testability of models with additional singlet scalars with and without CSI

 What if the hhh coupling is found to be

$$\Delta \lambda_{hhh}/\lambda_{hhh}^{\rm SM}=2/3(\simeq 70\%)$$

at future colliders?

ullet O(N) models without CSI predicting

$$\Delta \lambda_{hhh} / \lambda_{hhh}^{\rm SM} = 2/3 (\simeq 70\%)$$

• CSI O(N) models

Models with and without CSI can be distinguished at future GW interferometers even if they share common hhh coupling

Testability of the Higgs singlet model

Benchmark point

[Hashino, MK, Kanemura, Ko, Matsui (2016)]

v_{Φ} [GeV]	v_S [GeV]	$m_h \; [{\rm GeV}]$	$\mu_{\Phi S} [{ m GeV}]$	μ_S' [GeV]	μ_S [GeV]	$m_H \; [{ m GeV}]$	θ [degrees]
246.2	90	125.5	-80	-30	0	[160, 240]	[-45, 0]

Implemented into CosmoTransitions 1.00 [Wainwright (2012)]

Collider experiments

LHC Run I results

$$\kappa_Z = 1.03^{+0.11}_{-0.11}, \kappa_W = 0.91^{+0.10}_{-0.10}$$
 [ATLAS, CMS (2016)]

High-Luminosity LHC

$$\kappa_V:2\%$$
 [CMS (2013)]

• ILC w/ $\sqrt{s}=500~{\rm GeV}$ $\kappa_Z:0.37\%$ $\kappa_W:0.51\%$

• ILC w/ $\sqrt{s} = 1 \text{ TeV}$

 $\Delta\lambda_{hhh}:10\%$ [Fujii et al. (2015)]

The synergy between the Higgs boson coupling measurements and GW observations is important for the HSM Higgs potential

Summary

Models with additional singlet scalars with and without CSI

Higgs singlet model

The strongly 1stOPT of the EWSB in extended Higgs sectors can be tested by the synergy of the measurements of Higgs boson couplings at the LHC, the hhh coupling at the ILC and GWs at future space-based interferometers
November 28, 2016

Mitsuru KAKIZAKI

November 28, 2016 13

Backup slides

Electroweak baryogenesis (EWBG) and Higgs boson couplings

Sakharov's conditions for BAU

- 1. Baryon number violation
 - **L** Sphaleron process
- 2. Violation of C and CP
 - **L** Extended Higgs sector
- 3. Departure from thermal equilibrium
 - **L** Strongly first order phase transition (1st OPT): $\varphi_c/T_c \gtrsim 1$

SM Higgs sector w/ one doublet:

• Electroweak phase transition (EWPT) is NOT of 1st order for $m_h=125~{\rm GeV}$

EWBG is an important physics case relating the Higgs sector to BSM phenomena

Strongly 1st OPT and Higgs boson couplings

Models with extended Higgs sector

- 1st OPT is easily realized
- Signatures are testable at colliders

e.g. Two Higgs doublet model (2HDM)₅₀₀

- Condition for strongly 1st OPT: $\varphi_c/T_c \gtrsim 1$
- Large deviation in the tripleHiggs boson coupling

$$(\Delta \lambda_{hhh}/\lambda_{hhh}^{\rm SM} \gtrsim 10\%)$$

ILC 1 TeV can measure λ_{hhh} at 10% accuracy [Fujii et al. (2015)]

EWBG can be tested at future colliders

[Kanemura, Okada, Senaha (2005)]

Studies on the GWs from 1st order EWPT

Model independent analysis

[Grojean, Servant (2007); Kikuta, Kohri, So (2014), ...]

Higgs potential with higher order operators

[Delaunay, Grojean, Wells (2008); Huang, Wan, Wang, Cai, Zhang (2016), ...]

Non-decoupling loop effects from hypothetical particles

- Light stop loop effects in the MSSM [Apreda, Maggiore, Nicolis, Riotto (2002), ...]
- n.b. Light stops are excluded by LHC

Additional scalar loop effects

[MK, Kanemura, Matsui (2015); Hashino, MK, Kanemura, Matsui (2016), ...]

Non-thermal effects even at the tree level

- Next-to-MSSM [Apreda, Maggiore, Nicolis, Riotto (2002), Huber, Konstandin, Nardini, Rues (2015), ...]
- Real singlet extension Today's topic
 [Huang, Long, Wang (2016); Hashino, MK, Kanemura Ko, Matsui (2016),]

Large GW signals compatible with EWBG: [No (2011), ...]

Efficiency factor

November 28, 2016

Mitsuru KAKIZAKI

Models with additional singlet scalars (without CSI) (contd.)

Effective potential:

[MK, Kanemura, Matsui (2015)]

$$V_{\text{eff}}(\varphi) = -\frac{\mu^2}{2} \varphi^2 + \frac{\lambda}{4} \varphi^4 \,. + \sum_i \frac{n_i}{64\pi^2} M_i^4(\varphi) \left(\ln \frac{M_i^2(\varphi)}{Q^2} - \frac{3}{2} \right)$$

$$\lambda_{hhh}^{O(N)} = \frac{3m_h^2}{v} \left\{ 1 - \frac{1}{\pi^2} \frac{m_t^4}{v^2 m_h^2} + \frac{N}{12\pi^2} \frac{m_S^4}{v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2}\right)^3 \right\} \quad \text{Non decoupling loop effect from additional scalars}$$

• Finite temperature effective potential 600 (high temperature expansion):

$$V_{\text{eff}}(\varphi, T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$$

$$\frac{\varphi_c}{T_c} \propto E = \frac{1}{12\pi v^3} \left[6m_W^3 + 3m_Z^3 + Nm_S^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \left(1 + \frac{3\mu_S^2}{2m_S^2} \right) \right] \stackrel{\triangleright}{\underset{\triangleright}{\Sigma}} 400$$

Non decoupling loop effect from additional scalars

Typically $\mathcal{O}(10)\%$ deviation in λ_{hhh} for strongly 1st OPT

GW spectrum in CSI O(N) models

Contribution to GWs:

- Collision:
- Sound wave:
- MHD Turbulence:
- Benchmark points:

$$N = 1, 4, 12, 60$$

from the bottom

[Hashino, MK, Kanemura, Matsui (2016)]

Experimental prospects:

- [Caprini et al. (2015)] eLISA:
- DECIGO: [Kawamura et al. (2011)]

 Contribution from sound waves is dominant and detectable at future space-based interferometers, eLISA and DECIGO

Comparison of GW spectra

GW spectrum for $v_b = 1$

- Case of accelerating wall:
 - For large α , the bubble wall can accelerate without 10⁻⁶ reaching a terminal velocity
- Contribution to GWs:
 - Collision: \$ 10
 - Sound wave: ——— (
 - MHD Turbulence: --- 10⁻¹⁵
 - Benchmark points:

$$N=4,12,60$$
 from the bottom

[Hashino, MK, Kanemura, Matsui (2016)]

ullet O(N) models without CSI

Transition temperature and wall velocity dependence of detectability of GWs

Predicted values of lpha and eta

Numerical results based on the two-field analysis

Benchmark point

v_{Φ} [GeV]	v_S [GeV]	$m_h \; [{\rm GeV}]$	$\mu_{\Phi S} [{ m GeV}]$	μ_S' [GeV]	μ_S [GeV]	$m_H \; [{ m GeV}]$	θ [degrees]
246.2	90	125.5	-80	-30	0	[160, 240]	[-45, 0]

- Condition for strongly 1st OPT
 - Constraints on α & $\tilde{\beta}$ [Hashino, MK, Kanemura, Ko, Matsui (2016)]

Prospects of future interferometers 10⁴

- eLISA (C1, C2, C3, C4):
 [Caprini et al. (2015)]
- DECIGO (Pre, 1 cluster, Correlation)
 [Kawamura et al. (2011)]

GWs from 1st OPT in the HSM are detectable at eLISA and DECIGO

eLISA design

[Caprini et al (2015)]

Name	C1	C2	C3	C4
Full name	N2A5M5L6	N2A1M5L6	N2A2M5L4	N1A1M2L4
# links	6	6	4	4
Arm length [km]	5M	1M	2M	1M
Duration [years]	5	5	5	2
Noise level	N2	N2	N2	N1