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Spherical collapse model and number of clusters

Spherical collapse model

m Spherical collapse model (a spherical region with slightly higher density,
expand like background and the expansion rate decreases due to gravity
and then stop at turn-around and collapse and finally virialize)

m SC provide a useful method to count number of collapsed haloes
m We add the shear and rotation to DM fluid
m Study how it affects number of massive clusters

m Constrain the cosmological parameters including the shear and rotation
parameter using observational data
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Evolution of the density contrast

Related equations

m The equations describing the evolution of the density contrast of a fluid

0 + 3H (car; — Wi)d + [L+ W + (1 + )]V - & = 0 (1)
. . 1 -
i+ 2Hi; + (i - Vi) + 5 V6 =0 ()
V2 —4nGa® > pedi(1+ 3cky) =0 (3)
k
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. . 1 -
i+ 2Hi; + (i - Vi) + 5 V6 =0 ()
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k

m Add the shear and rotation

) 1 1 -
0+2H9+§92+U2—w2+—2V2(/>:O, (4)
a

where 6 is divergence of peculiar velocity
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V.
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Evolution of the density contrast

Related equations

m The shear and rotation tensor are given by
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Evolution of the density contrast

Related equations

m The shear and rotation tensor are given by

1 /0w Ou 1
1 (0W Ou
) (axi - 3xf> ©)
m Considering « as the ratio of the rotational and gravitational terms
3 F 4 &2 3
1 e i ! o m = _ m - 1 6m — O 7
5m+<a+E>5m 3Too 2a5E2(1 @) 00m (1 + m) (7)
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Evolution of the density contrast

Related equations

m The shear and rotation tensor are given by

1 /0w O 1

% =5 (ax + ax> ~3%% (5)
1 /oW O

=D (axi - 3xf> o)

m Considering « as the ratio of the rotational and gravitational terms

3 F 4 672 3
i =) - — (1 - )1 +6n) =0 (7
m The linear equation is
3 FE 3
1 = i ! = —
S+ <a + E> Om = 5552 m00m = 0 (8)
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Critical density contrast

Finding the critical density contrast and virial overdensity

m First step: initial conditions which lead to collapse in non-linear equation
second step: the critical density contrast is the solution of linear equation
with the initial conditions
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Finding the critical density contrast and virial overdensity

m First step: initial conditions which lead to collapse in non-linear equation
second step: the critical density contrast is the solution of linear equation
with the initial conditions

m Virial overdensity is given by A, = ((x/y)® where ( is the overdensity at
turn-around, x is the scale factor divided by the turn-around scale factor
and y is the ratio between the virialised radius and the turn-around radius

Critical density contrast vs a Virial overdensity vs «
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Mass function and number of clusters

m Mass function

dn(M,z)  podv(M,z)
am M daM

W G TE T IR ST BT RS A B ELEL B TER I Constraints on shear and rotation with massive gal CosPA2016,SydneyNov, 2016  7/12



Mass function and number of clusters

m Mass function

dn(M,z)  podv(M,z)
am M daM

m ST mass function (v = %)

0.7071/2) (10)

[2
f(v) =0.2709¢/ = (1 + 1.10961") exp (— 5
s
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m Mass function

dn(M,z)  podv(M,z)
am M daM

m ST mass function (v = &)
2 . 2
flv) = 0.2709[ (14 1.10960"%) exp (—O 7(;71’ ) (10)
™
m The amplitude of mass fluctuations o
0’ (R,2) = =— / K*P(k, ) W? (kR)dk (11)
27T2 0
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Mass function and number of clusters

m Mass function

dn(M,z)  podv(M,z)
am M daM

m ST mass function (v = &)
2 . 2
flv) = 0.2709[ (14 1.10960"%) exp (—O 7(;71’ ) (10)
v
m The amplitude of mass fluctuations o
o%(R,2) = — / K*P(k,z)W*(kR)dk (11)
27T2 0
m The linear matter power spectrum at redshift z
P(k,z) = Po(K)T*(k)D*(z) (12)

W T T T TS R ERT NS A ETEL ER R IETIConstraints on shear and rotation with massive gal CosPA2016,SydneyNov, 2016 7/12



Mass function and number of clusters

A. Mehrabi (Bu- LENTLII S ETEGERBIEL) IConstraints on shear and rotation with massive gal CosPA2016,SydneyNov, 2016 8/12



Mass function and number of clusters

m The comoving number density of clusters above a certain mass M

> dn(M', z)
I’l(> M(),Z) = /MO WdM/ (13)

4
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Mass function and number of clusters

m The comoving number density of clusters above a certain mass M

> dn(M', z)
I’l(> M(),Z) = /IWO WdM/ (13)

m The comoving number of clusters per unit redshift

av
Niga = I’l(M > MO,Z)?Z (14)

W T T T TS R ERT NS A ETEL EL B IETIConstraints on shear and rotation with massive gal CosPA2016,SydneyNov, 2016 8/12



Mass function and number of clusters

m The comoving number density of clusters above a certain mass M

n(>Mo,z):/M %dM/ (13)

m The comoving number of clusters per unit redshift

dav
Nbin = I’l(M > Mo,Z)* (14)
dz
m Total number count of massive clusters
av
N = /medZ —/ (]l4>M()7 )Fdz (15)
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Mass function and number of clusters

m The comoving number density of clusters above a certain mass M

n(>Mo,z):/M %dM/ (13)

m The comoving number of clusters per unit redshift

dav
Nbin = I’l(M > Mo,Z)* (14)
dz
m Total number count of massive clusters
av
N = /medz —/ (]‘4>MQ7 )Fdz (15)

m We examine a logarithmic relation fora = o = —glog,, &
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Mass function and number of clusters

Evolution of the number counts
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Mass function and number of clusters

Evolution of the number counts Evolution of the total number
counts
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Data used in this work

m To fix the background
El Snla: Union 2.1 sample (Suzuki et al. 2012) includes 580 Sn
HE Baryon Acoustic Oscillation
E Cosmic Microwave Background
m To constrain the shear and rotation
El Number of massive clusters collected by (Campanelli et al. 2012)
The data is number of massive clusters with M > 8 x 104~ 'M, up to
redshift 0.9
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Results

Summary of results

Parameters | Best fit value -0 2—0 3—0
0.013 0.0T
Om 0.284 +0.0064 ;8'8%% fg-ggé
h 0.678 +0.017 0% R
B 0.0019 OO <0.0043 < 0.0054
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Thanks for your attention
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