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Dark Matter Evidence

• Rotation Curves of Galaxies 
• Gravitational Lensing 
• Large Scale Structure 
• CMB anisotropies, …
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All confirmed evidence comes  
from gravitational interaction 

CDM:  negligible velocity, WIMP 
WDM: keV sterile neutrino 
HDM: active neutrino

GR Lensing at Work 

SDSS J1004+4112  
HST AFT/WFC!

10"!

Abel 2218c Galaxy cluster 
gravitational lens"
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Allows to determine the 
total mass of lenses from 
observed lensing effects  
" missing mass  
" dark 

More dynamical Evidence: Large Scale Structure 

ITEP Winter School 2014 

Simulations of structure 
of the Universe. 
 

Input: 
- initial fluctuations 
- laws of gravity 
 
calculate the evolution of 
- structures 
- their power spectrum 
 
Compare to measures power spectrum:  
- only visible matter " mismatch  
- inclusion of dark matter " OK  

Millenium simulation"
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Merger History of Dark Halo

• Standard picture 
• DM halo grow 

hierarchically 
• Small scale 

structures form first 
• then merge into 

larger halo
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1.2 Basic Elements of Galaxy Formation 11
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Fig. 1.3. A schematic merger tree, illustrating the merger history of a dark matter halo. It shows, at three
different epochs, the progenitor halos that at time t4 have merged to form a single halo. The size of each
circle represents the mass of the halo. Merger histories of dark matter halos play an important role in
hierarchical theories of galaxy formation.

have larger amplitudes on smaller scales. Consequently, dark matter halos grow hierarchically, in
the sense that larger halos are formed by the coalescence (merging) of smaller progenitors. Such
a formation process is usually called a hierarchical or ‘bottom-up’ scenario.

The formation history of a dark matter halo can be described by a ‘merger tree’ that traces
all its progenitors, as illustrated in Fig. 1.3. Such merger trees play an important role in modern
galaxy formation theory. Note, however, that illustrations such as Fig. 1.3 can be misleading. In
CDM models part of the growth of a massive halo is due to merging with a large number of much
smaller halos, and to a good approximation, such mergers can be thought of as smooth accretion.
When two similar mass dark matter halos merge, violent relaxation rapidly transforms the orbital
energy of the progenitors into the internal binding energy of the quasi-equilibrium remnant. Any
hot gas associated with the progenitors is shock-heated during the merger and settles back into
hydrostatic equilibrium in the new halo. If the progenitor halos contained central galaxies, the
galaxies also merge as part of the violent relaxation process, producing a new central galaxy in
the final system. Such a merger may be accompanied by strong star formation or AGN activity if
the merging galaxies contained significant amounts of cold gas. If two merging halos have very
different mass, the dynamical processes are less violent. The smaller system orbits within the
main halo for an extended period of time during which two processes compete to determine its
eventual fate. Dynamical friction transfers energy from its orbit to the main halo, causing it to
spiral inwards, while tidal effects remove mass from its outer regions and may eventually dissolve
it completely (see Chapter 12). Dynamical friction is more effective for more massive satellites,
but if the mass ratio of the initial halos is large enough, the smaller object (and any galaxy
associated with it) can maintain its identity for a long time. This is the process for the build-up of
clusters of galaxies: a cluster may be considered as a massive dark matter halo hosting a relatively
massive galaxy near its center and many satellites that have not yet dissolved or merged with the
central galaxy.
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have larger amplitudes on smaller scales. Consequently, dark matter halos grow hierarchically, in
the sense that larger halos are formed by the coalescence (merging) of smaller progenitors. Such
a formation process is usually called a hierarchical or ‘bottom-up’ scenario.

The formation history of a dark matter halo can be described by a ‘merger tree’ that traces
all its progenitors, as illustrated in Fig. 1.3. Such merger trees play an important role in modern
galaxy formation theory. Note, however, that illustrations such as Fig. 1.3 can be misleading. In
CDM models part of the growth of a massive halo is due to merging with a large number of much
smaller halos, and to a good approximation, such mergers can be thought of as smooth accretion.
When two similar mass dark matter halos merge, violent relaxation rapidly transforms the orbital
energy of the progenitors into the internal binding energy of the quasi-equilibrium remnant. Any
hot gas associated with the progenitors is shock-heated during the merger and settles back into
hydrostatic equilibrium in the new halo. If the progenitor halos contained central galaxies, the
galaxies also merge as part of the violent relaxation process, producing a new central galaxy in
the final system. Such a merger may be accompanied by strong star formation or AGN activity if
the merging galaxies contained significant amounts of cold gas. If two merging halos have very
different mass, the dynamical processes are less violent. The smaller system orbits within the
main halo for an extended period of time during which two processes compete to determine its
eventual fate. Dynamical friction transfers energy from its orbit to the main halo, causing it to
spiral inwards, while tidal effects remove mass from its outer regions and may eventually dissolve
it completely (see Chapter 12). Dynamical friction is more effective for more massive satellites,
but if the mass ratio of the initial halos is large enough, the smaller object (and any galaxy
associated with it) can maintain its identity for a long time. This is the process for the build-up of
clusters of galaxies: a cluster may be considered as a massive dark matter halo hosting a relatively
massive galaxy near its center and many satellites that have not yet dissolved or merged with the
central galaxy.
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have larger amplitudes on smaller scales. Consequently, dark matter halos grow hierarchically, in
the sense that larger halos are formed by the coalescence (merging) of smaller progenitors. Such
a formation process is usually called a hierarchical or ‘bottom-up’ scenario.

The formation history of a dark matter halo can be described by a ‘merger tree’ that traces
all its progenitors, as illustrated in Fig. 1.3. Such merger trees play an important role in modern
galaxy formation theory. Note, however, that illustrations such as Fig. 1.3 can be misleading. In
CDM models part of the growth of a massive halo is due to merging with a large number of much
smaller halos, and to a good approximation, such mergers can be thought of as smooth accretion.
When two similar mass dark matter halos merge, violent relaxation rapidly transforms the orbital
energy of the progenitors into the internal binding energy of the quasi-equilibrium remnant. Any
hot gas associated with the progenitors is shock-heated during the merger and settles back into
hydrostatic equilibrium in the new halo. If the progenitor halos contained central galaxies, the
galaxies also merge as part of the violent relaxation process, producing a new central galaxy in
the final system. Such a merger may be accompanied by strong star formation or AGN activity if
the merging galaxies contained significant amounts of cold gas. If two merging halos have very
different mass, the dynamical processes are less violent. The smaller system orbits within the
main halo for an extended period of time during which two processes compete to determine its
eventual fate. Dynamical friction transfers energy from its orbit to the main halo, causing it to
spiral inwards, while tidal effects remove mass from its outer regions and may eventually dissolve
it completely (see Chapter 12). Dynamical friction is more effective for more massive satellites,
but if the mass ratio of the initial halos is large enough, the smaller object (and any galaxy
associated with it) can maintain its identity for a long time. This is the process for the build-up of
clusters of galaxies: a cluster may be considered as a massive dark matter halo hosting a relatively
massive galaxy near its center and many satellites that have not yet dissolved or merged with the
central galaxy.
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Weakly Interacting Massive Particle 
(WIMP)

• Mass around ~100GeV 
• Coupling ~ 0.5 
• Correct relic abundance Ω~0.3 
• Thermal History 
• Equilibrium XX<>ff
• Equilibrium XX >ff
• Freeze-out

• Cold Dark Matter (CDM)
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Matter Distribution

Hlozek et al. 2012

Agrees with Double Dark Theory!

Sunday, September 9, 12

ΛCDM: successful on large scales
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Why Interacting DM ?
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• Theoretically interesting 
• Atomic DM, Mirror DM, Composite DM 
• Eventually, all DM is interacting in some way, 

the question is how strongly? 
• Self-Interacting DM 

• Possible new testable signatures 
• CMB, LSS, BBN 
• Other astrophysical effects,… 

• Solution of CDM controversies 
• Cusp-vs-Core, Too-big-to-fail, missing satellite,… 
•  H0,  σ8?

�

MX
⇠ cm2/g ⇠ barn/GeV

2-3σ, systematic uncertainty Review talk by Silvia Galli



Tension in Hubble Constant?
• Hubble Constant H0 defined as the present value of 

• Planck(2015) gives 
• HST(2016)    gives
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H ⌘ 1

a

da

dt
=

p
⇢r + ⇢m + ⇢⇤

Mp

67.8± 0.9 km s�1Mpc�1

73.24± 1.74 km s�1Mpc�1

biases in identifying these we use current results from the four
SN-independent projects shown in Figure16 of Planck Colla-
boration et al. (2014): IR Tully–Fisher from Sorce et al. (2012), 2
strong lenses from Suyu et al. (2013), 4 distant maser systems
from Gao et al. (2016), and 38 SZ clusters from Bonamente et al.
(2006). These are plotted in Figure 13. A simple weighted average
of these SN-independent measurements gives H0=73.4±
2.6 km s−1Mpc−1, nearly the same as our primary fit though
with a 45% larger uncertainty. The most precise of these is from
the analysis of two strong gravitational lenses and yields
H0=75±4 km s−1Mpc−1 (Suyu et al. 2013), a result that is
both independent of ours and has been reaffirmed by an
independent lensing analysis (Birrer et al. 2015). However, we
note that while lensing provides an independent, absolute scale,
the transformation to H0 depends on knowledge of H(z) between
z=0 and the redshifts of the two lenses (z=0.295 and
z=0.631) which may be gathered from parameter constraints
from the CMB or from an empirical distance ladder across this
redshift range. Either approach will add significantly to the overall
uncertainty. Given the breadth of evidence that the local
measurement of H0 is higher than that inferred from the CMB
and ΛCDM it is worthwhile to explore possible cosmological
origins for the discrepancy.

We may consider the simplest extensions of ΛCDM which
could explain a difference between a local and cosmological
Hubble constant of ∼4–6 km s−1Mpc−1. We are not the first to
look for such a resolution, though the roster of datasets examined
has varied substantially and evolves as measurements improve
(Dvorkin et al. 2014; Leistedt et al. 2014; Wyman et al. 2014;
Aubourg et al. 2015; Cuesta et al. 2015). The simplest
parameterizations of dark energy with w0<−1 or with
w0>−1 and wa<0 can alleviate but not fully remove tension
with H0 (see Figure 13) due to support for w(z)∼−1 signal from
high-redshift SNe Ia and BAO (Aubourg et al. 2015; Cuesta et al.
2015, see Figure 14). A very recent (z<0.03) and dramatic
decrease in w or an episode of strong dark energy at
3<z<1000 may evade detection and still produce a high
value of H0. Whether such a model creates additional tensions will
depend on its prescription and still, if empirically motivated, is
likely to suffer from extreme fine-tuning.

A synthesis of the studies cited above indicates a more fruitful
avenue is found in the “dark radiation” sector. An increase in the
number of relativistic species (dark radiation; e.g., neutrinos) in
the early universe increases the radiation density and expansion
rate during the radiation-dominated era, shifting the epoch of
matter-radiation equality to earlier times. The resulting reduction
in size of the sound horizon (which is used as a standard ruler for
the CMB and BAO) by a few percent for one additional species
(Neff=4) increases H0 by about 7 km s−1Mpc−1 for a flat
universe, more than enough to bridge the divide between the local
and high-redshift scales. A fractional increase (i.e., less than unity)
is also quite plausible for neutrinos of differing temperatures or
massless bosons decoupling before muon annihilation in the early
universe (e.g., Goldstone bosons; Weinberg 2013), producing
ΔNeff=0.39 or 0.57 depending on the decoupling temperature.
An example of such a fit comes from Aubourg et al. (2015) using
a comprehensive set of BAO measurements and Planck data,
finding Neff=3.43±0.26 and H0=71±1.7 km s−1Mpc−1. A
similar result from WMAP9+SPT+ACT+SN+BAO gives
Neff=3.61±0.6 andH0=71.8±3.1 km s−1Mpc−1 (Hinshaw
et al. 2013). Thus, a value of ΔNeff in the range 0.4–1.0 would
relieve some or all of the tension. Although fits to the Planck

dataset (Planck Collaboration et al. 2015) do not indicate the
presence of such additional radiation, they do not exclude this full
range either.
Allowing the Neff degree of freedom triples the uncertainty in

the cosmological value of H0 from Planck Collaboration et al.

Figure 13. Local measurements of H0 compared to values predicted by CMB
data in conjunction with ΛCDM. We show 4 SN Ia-independent values
selected for comparison by Planck Collaboration et al. (2014) and their
average, the primary fit from R11, its reanalysis by Efstathiou (2014) and the
results presented here. The 3.4σ difference between Planck+ΛCDM (Planck
Collaboration et al. 2016) and our result motivates the exploration of
extensions to ΛCDM.

Figure 14. Confidence regions determined with CosmoMC based on the data
from Planck (TT+TEB+lensing), BAO including Lyα QSOs, the JLA SN
sample (Betoule et al. 2014) and with and without our determination of H0 for
the wCDM cosmological model. As shown there is a degeneracy between w
and H0 and the local measurement of H0 pulls the solution to a lower value of w
though it is still consistent with −1.
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The Astrophysical Journal, 826:56 (31pp), 2016 July 20 Riess et al.
Planck Collaboration: Cosmological parameters

Fig. 30. Constraints on the sum of the neutrino masses for vari-
ous data combinations.

This is slightly weaker than the constraint from Planck
TT,TE,EE+lowP+lensing+BAO (which is tighter in both the
CamSpec and Plik likelihoods), but is immune to low level sys-
tematics that might a↵ect the constraints from the Planck polar-
ization spectra. Equation (57) is therefore a conservative limit.
Marginalizing over the range of neutrino masses, the Planck con-
straints on the late-time parameters are28

H0 = 67.7 ± 0.6

�8 = 0.810+0.015
�0.012

9>=
>; Planck TT+lowP+lensing+ext. (58)

For this restricted range of neutrino masses, the impact on the
other cosmological parameters is small and, in particular, low
values of �8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
and Planck Collaboration XV 2016). The situation with galaxy
weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales, where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
tant (Harnois-Déraps et al. 2015).

A larger range of neutrino masses was found by Beutler et al.
(2014) using a combination of RSD, BAO, and weak lens-
ing information. The tension between the RSD results and
base ⇤CDM was subsequently reduced following the analysis
of Samushia et al. (2014), as shown in Fig. 17. Galaxy weak
lensing and some cluster constraints remain in tension with base
⇤CDM, and we discuss possible neutrino resolutions of these
problems in Sect. 6.4.4.

28To simplify the displayed equations, H0 is given in units of
km s�1Mpc�1 in this section.
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Fig. 31. Samples from Planck TT+lowP chains in the Ne↵–H0
plane, colour-coded by �8. The grey bands show the constraint
H0 = (70.6 ± 3.3) km s�1Mpc�1 of Eq. (30). Notice that higher
Ne↵ brings H0 into better consistency with direct measurements,
but increases �8. Solid black contours show the constraints from
Planck TT,TE,EE+lowP+BAO. Models with Ne↵ < 3.046 (left
of the solid vertical line) require photon heating after neutrino
decoupling or incomplete thermalization. Dashed vertical lines
correspond to specific fully-thermalized particle models, for ex-
ample one additional massless boson that decoupled around the
same time as the neutrinos (�Ne↵ ⇡ 0.57), or before muon
annihilation (�Ne↵ ⇡ 0.39), or an additional sterile neutrino
that decoupled around the same time as the active neutrinos
(�Ne↵ ⇡ 1).

Another way of potentially improving neutrino mass con-
straints is to use measurements of the Ly↵ flux power spectrum
of high-redshift quasars. Palanque-Delabrouille et al. (2015)
have recently reported an analysis of a large sample of quasar
spectra from the SDSSIII/BOSS survey. When combining their
results with 2013 Planck data, these authors find a bound

P
m⌫ <

0.15 eV (95 % CL), compatible with the results presented in this
section.

An exciting future prospect is the possible direct detection
of non-relativistic cosmic neutrinos by capture on tritium, for
example with the PTOLEMY experiment (Cocco et al. 2007;
Betts et al. 2013; Long et al. 2014). Unfortunately, for the mass
range

P
m⌫ < 0.23 eV preferred by Planck, detection with the

first generation experiment will be extremely di�cult.

6.4.2. Constraints on Ne↵

Dark radiation density in the early Universe is usually parame-
terized by Ne↵ , defined so that the total relativistic energy density
in neutrinos and any other dark radiation is given in terms of the
photon density ⇢� at T ⌧ 1 MeV by

⇢ = Ne↵
7
8

 
4

11

!4/3

⇢�. (59)

The numerical factors in this equation are included so that
Ne↵ = 3 for three standard model neutrinos that were thermal-
ized in the early Universe and decoupled well before electron-
positron annihilation. The standard cosmological prediction is

42
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Tension in σ8 ?
• Variance of perturbation field   collapsed objects 

• where the filter function 
    P(k) is matter power spectrum. 
•                                  

11

�8 ⌘ �(8h�1Mpc)

�2(R) =
1

2⇡2

Z
W 2

R(k)P (k)k2dk,

WR(k) =
3

(kR)

3
[sin(kR)� kR cos(kR)] ,

A&A 571, A20 (2014)
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Fig. 10. Comparison of constraints (68% confidence interval) on
�8(⌦m/0.27)0.3 from di↵erent experiments of large–scale structure
(LSS), clusters, and CMB. The solid line ACT point assumes the same
universal pressure profile as this work. Probes marked with an asterisk
have an original power of ⌦m di↵erent from 0.3. See text and Table 3
for more details.

for SZ and BAO and BBN with a prior on (1�b) distributed uni-
formly in [0.7, 1]. The figure thus demonstrates good agreement
amongst all cluster observations, whether in optical, X-rays, or
SZ. Table 3 compares the di↵erent data and assumptions of the
di↵erent cluster-related publications.

6.2. Consistency with the Planck y-map

In a companion paper (Planck Collaboration XXI 2014), we per-
formed an analysis of the SZ angular power spectrum derived
from the Planck y-map obtained with a dedicated component-
separation technique. For the first time, the power spectrum has
been measured at intermediate scales (50  `  1000). The same
modelling as in Sect. 2 and Taburet et al. (2009, 2010) has been
used to derive best-fit values of ⌦m and �8, assuming the uni-
versal pressure profile (Arnaud et al. 2010), a bias 1 � b = 0.8,
and the best-fit values for other cosmological parameters from
Planck Collaboration XVI (2014)6. The best model obtained,
shown in Fig. 7 as the dashed line, demonstrates the consistency
between the PSZ number counts and the signal observed in the
y-map.

6.3. Comparison with Planck primary CMB constraints

We now compare the PSZ cluster constraints to those from the
analysis of the primary CMB temperature anisotropies given in
Planck Collaboration XVI (2014) (see Footnote 6). In that anal-
ysis �8 is derived from the standard six ⇤CDM parameters.

The Planck primary CMB constraints, in the (⌦m,�8) plane,
di↵er significantly from our own, in particular through favouring
a higher value of �8, (see Fig. 11). For (1�b) = 0.8, this leads to

6 For Planck CMB we took the constraints from the Planck+WP case,
Col. 6 of Table 2 of Planck Collaboration XVI (2014). The baseline
model includes massive neutrinos with

P
m⌫ = 0.06 eV.

Fig. 11. 2D ⌦m–�8 likelihood contours for the analysis with Planck
CMB only (red); Planck SZ and BAO and BBN (blue) with (1 � b)
in [0.7, 1].

a factor of 2 larger number of predicted clusters than is actually
observed (see Fig. 7). There is therefore some tension between
the results from the Planck CMB analysis and the current clus-
ter analysis. Figure 10 illustrates this with a comparison of three
analyses of primary CMB data alone (Planck Collaboration XVI
2014; Story et al. 2013; Hinshaw et al. 2013) and cluster con-
straints in terms of �8(⌦m/0.27)0.3.

It is possible that the tension results from a combination of
some residual systematics with a substantial statistical fluctu-
ation. Enough tests and comparisons have been made on the
Planck data sets that it is plausible that at least one discrepancy
at the two or three sigma level will arise by chance. Nevertheless,
it is worth considering the implications if the discrepancy is real.

As we have noted, the modelling of the cluster gas physics
is the most important uncertainty in our analysis, in particular
through its influence on the mass bias (1� b). While we have ar-
gued for a preferred value of (1 � b) ' 0.8 based on comparison
of our Y500–M500 relation to those derived from a number of dif-
ferent numerical simulations, and we suggest a plausible range
of (1�b) from 0.7 to 1, a significantly lower value would substan-
tially alleviate the tension between CMB and SZ constraints. We
have undertaken a joint analysis using the CMB likelihood pre-
sented in Planck Collaboration XV (2014) and the cluster like-
lihood presented in the present paper, sampling (1 � b) in the
range [0.1, 1.5]. This results in a “measurement” of (1 � b) =
0.59 ± 0.05. We show in Fig 7 the SZ cluster counts predicted
by the Planck’s best-fit primary CMB model for (1 � b) = 0.59.
Clearly, this substantial reduction in (1�b) is enough to reconcile
our observed SZ cluster counts with Planck’s best-fit primary
CMB parameters.

Such a large bias is di�cult to reconcile with numerical sim-
ulations, and cluster masses estimated from X-rays and from
weak lensing do not typically show such large o↵sets (see
Appendix A). Systematic discrepancies in the relevant scaling
relations have, however, been identified and studied in stack-
ing analyses of X-ray, SZ, and lensing data for the very large
MaxBCG cluster sample, e.g., Planck Collaboration XII (2011),
Biesiadzinski et al. (2012), Draper et al. (2012), Rozo et al.
(2012), and Sehgal et al. (2013), suggesting that the issue is not
yet fully settled from an observational point of view. The uncer-
tainty reflects the inherent biases of the di↵erent mass estimates.
Systematic e↵ects arising from instrument calibration constitute
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Planck Collaboration: Planck 2015 results. XXIV.

Fig. 5. Comparison of constraints from the one-dimensional (dN/dz)
and two-dimensional (dN/dzdq) likelihoods on cosmological param-
eters and the scaling relation mass exponent, ↵. This comparison
uses the MMF3 catalogue, the CCCP prior on the mass bias and the
SZ+BAO+BBN data set. The corresponding best-fit model redshift dis-
tributions are shown in Fig. 6.

Fig. 6. Redshift distribution of best-fit models from the four analysis
cases shown in Fig. 5. The observed counts in the MMF3 catalogue
(q > 6) are plotted as the red points with error bars, and as in Fig. 5 we
adopt the CCCP mass prior with the SZ+BAO+BBN data set.

parameter constraints. Although the one-dimensional likelihood
prefers a steeper slope than the X-ray prior, the two-dimensional
analysis does not, and the cosmological constraints remain ro-
bust to varying ↵.

We define a generalized �2 statistic as described above, now
over the two-dimensional bins in the (z, q)-plane. This general-
ized �2 for the fit with the X-ray prior is 43 (PTE = 0.28), com-
pared to �2 = 45 (PTE = 0.23) when ↵ is a free parameter.

Figure 6 displays the redshift distribution of the best-fit mod-
els in all four cases. Despite their apparent di�culty in match-
ing the second and third redshift bins, the PTE values suggest
that these fits are moderately good to acceptable. We note that,
as mentioned briefly in Sect. 5.1, clustering e↵ects will increase
the scatter in each bin slightly over the Poisson value we have as-
sumed, causing our quoted PTE values to be somewhat smaller
than the true ones.

Fig. 7. Comparison of constraints from the CMB to those from the clus-
ter counts in the (⌦m,�8)-plane. The green, blue and violet contours
give the cluster constraints (two-dimensional likelihood) at 68 and 95%
for the WtG, CCCP, and CMB lensing mass calibrations, respectively,
as listed in Table 2. These constraints are obtained from the MMF3 cata-
logue with the SZ+BAO+BBN data set and ↵ free (hence the SZ↵ nota-
tion). Constraints from the Planck TT, TE, EE+lowP CMB likelihood
(hereafter, Planck primary CMB) are shown as the dashed contours
enclosing 68 and 95% confidence regions (Planck Collaboration XIII
2016), while the grey shaded region also includes BAO. The red
contours give results from a joint analysis of the cluster counts and
the Planck lensing power spectrum (Planck Collaboration XV 2016),
adopting our external priors on ns and ⌦bh2 with the mass bias param-
eter free and ↵ constrained by the X-ray prior (hence the SZ notation
without the subscript ↵).

7. Cosmological constraints 2015

We extract constraints on ⌦m and �8 from the cluster counts in
combination with external data, imposing the di↵erent cluster
mass scale calibrations as prior distributions on the mass bias.
In Sect. 7.1, we compare our new constraints to and then com-
bine them with those from the CMB anisotropies in the base
⇤CDM model. We study parameter extensions to the base model
in Sect. 7.2. In the following, we adopt as our baseline the 2015
two-dimensional SZ likelihood with the CCCP mass bias prior,
↵ free and � = 2/3 fixed in Eq. (7). All quoted intervals are 68%
confidence and all upper/lower limits are 95% confidence.

7.1. Base ⇤CDM

7.1.1. Constraints on ⌦
m

and �
8

: comparison to primary

CMB parameters

Our 2013 analysis brought to light tension between constraints
on⌦m and�8 from the cluster counts and those from the primary
CMB in the base ⇤CDM model. In that analysis, we adopted a
flat prior on the mass bias over the range 1�b = [0.7, 1.0], with a
reference model defined by 1�b = 0.8 (see discussion in the Ap-
pendix of Planck Collaboration XX 2014). Given the good con-
sistency between the 2013 and 2015 cluster results (Fig. 3), we
expect the tension to remain under the same assumptions con-
cerning the mass bias.

Figure 7 compares our 2015 cluster constraints (MMF3
SZ+BAO+BBN) to those for the base ⇤CDM model from the
Planck CMB anisotropies. The cluster constraints, given the
three di↵erent priors on the mass bias, are shown by the filled
contours at 68 and 95% confidence, while the dashed black
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Table 3. Summary of Planck 2015 cluster cosmology constraints

Data �8

⇣
⌦m
0.31

⌘0.3
⌦m �8

WtG + BAO + BBN 0.806 ± 0.032 0.34 ± 0.03 0.78 ± 0.03
CCCP + BAO + BBN [Baseline] 0.774 ± 0.034 0.33 ± 0.03 0.76 ± 0.03
CMBlens + BAO + BBN 0.723 ± 0.038 0.32 ± 0.03 0.71 ± 0.03
CCCP + H0 + BBN 0.772 ± 0.034 0.31 ± 0.04 0.78 ± 0.04

Notes. The constraints are obtained for our baseline model: the two-dimensional likelihood over the MMF3 catalogue (q > 6) with ↵ free and
� = 2/3 fixed in Eq. (7).

contours give the Planck TT,TE,EE+lowP constraints (hereafter
Planck primary CMB, Planck Collaboration XIII 2016); the grey
shaded regions add BAO to the CMB. The central value of the
WtG mass prior lies at the extreme end of the range used in
2013 (i.e., 1 � b = 0.7); with its uncertainty range extending
even lower, the tension with primary CMB is greatly reduced, as
pointed out by von der Linden et al. (2014b). With similar un-
certainty but a central value shifted to 1 � b = 0.78, the CCCP
mass prior results in greater tension with the primary CMB. The
lensing mass prior, finally, implies little bias and hence much
greater tension.

The red contours present results from a joint analysis of
the cluster counts and the Planck lensing power spectrum
(Planck Collaboration XV 2016), adopting our external priors on
ns and ⌦bh2 with the mass bias parameter free and ↵ constrained
by the X-ray prior. It is interesting to note that these constraints
are fully independent of those from the primary CMB, but are in
good agreement with them, favouring only slightly lower values
for �8.

Table 3 summarizes our cluster cosmology constraints for the
base ⇤CDM model for the di↵erent mass bias priors. We give
the marginalized constraints on ⌦m and �8, as well as their com-
bination that is most tightly constrained by the cluster counts.
In addition, in the last line we list constraints when replacing
the BAO prior by a prior on H0 from direct local measurements
(Riess et al. 2011): H0 = 73.8 ± 2.4 km s�1 Mpc�1.

7.1.2. Joint Planck 2015 primary CMB and cluster

constraints

Mass bias required by the primary CMB. In Fig. 8 we compare
the three prior distributions to the mass bias required by the pri-
mary CMB. The latter is obtained as the posterior on 1�b from a
joint analysis of the MMF3 cluster counts and the CMB with the
mass bias as a free parameter. The best-fit value in this case is
1 � b = 0.58 ± 0.04, more than 1� below the central WtG value.
Perfect agreement with the primary CMB would imply that clus-
ters are even more massive than the WtG calibration. This figure
most clearly quantifies the tension between the Planck cluster
counts and primary CMB.

Reionization optical depth. Primary CMB temperature
anisotropies also provide a precise measurement of the param-
eter combination Ase�2⌧, where ⌧ is the optical depth from
Thomson scatter after reionization and As is the power spectrum
normalization on large scales (Planck Collaboration XIII 2016).
Low-` polarization anisotropies break the degeneracy by con-
straining ⌧ itself, but this measurement is delicate given the low
signal amplitude and di�cult systematic e↵ects; it is important,
however, in the determination of �8. It is therefore interesting
to compare the Planck primary CMB constraints on ⌧ to those
from a joint analysis of the cluster counts and primary CMB

Fig. 8. Comparison of cluster and primary CMB constraints in the base
⇤CDM model, expressed in terms of the mass bias, 1 � b. The solid
black curve shows the distribution of values required to reconcile the
counts and primary CMB in ⇤CDM; it is found as the posterior on 1�b
from a joint analysis of the Planck cluster counts and primary CMB
when leaving the mass bias free. The coloured dashed curves show the
three prior distributions on the mass bias listed in Table 2.

without the low-` polarization data (lowP). Battye et al. (2015),
for instance, pointed out that a lower value for ⌧ than suggested
by WMAP could reduce the level of tension between CMB and
large-scale structure.

The comparison is shown in Fig. 9. We see that the Planck
TT + SZ constraints are in good agreement with the value from
Planck CMB (i.e., TT,TE,EE+lowP), with the preferred value
for WtG slightly higher and CMB lensing pushing towards a
lower value. The ordering CMB lensing/CCCP/WtG from lower
to higher ⌧ posterior values matches the decreasing level of ten-
sion with the primary CMB on �8. These values remain, how-
ever, larger than what is required to fully remove the tension
in each case. The posterior distributions for the mass bias are
1� b = 0.60± 0.042, 1� b = 0.61± 0.049, 1� b = 0.66± 0.045,
respectively, for WtG, CCCP and CMB lensing, all significantly
shifted from the corresponding priors of Table 2. Allowing ⌧ to
adjust o↵ers only minor improvement in the tension reflected
by Fig. 8. Interestingly, the Planck TT posterior shown in Fig. 8
of Planck Collaboration XIII (2016) peaks at significantly higher
values, while our Planck TT + SZ constraints are consistent with
the result from Planck TT + lensing, an independent constraint
on ⌧ without lowP.

7.2. Model extensions

7.2.1. Curvature

We consider constraints on spatial curvature that can be set by
cluster counts. Our cluster counts combined with BBN and BAO
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Table 3. Parameters of the base⇤CDM cosmology computed from the 2015 baseline Planck likelihoods, illustrating the consistency
of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at low
and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the T E and EE spectra at high
multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the
cosmological parameters determined from the Planck TT+lowP and Planck TT,TE,EE+lowP likelihoods.

Parameter [1] Planck TT+lowP [2] Planck TE+lowP [3] Planck EE+lowP [4] Planck TT,TE,EE+lowP ([1] � [4])/�[1]

⌦bh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 �0.1
⌦ch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048

�0.0055 0.1198 ± 0.0015 0.0
100✓MC . . . . . . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2
⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022

�0.019 0.079 ± 0.017 �0.1
ln(1010As) . . . . . . 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046

�0.041 3.094 ± 0.034 �0.1
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2
H0 . . . . . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0
⌦m . . . . . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027

�0.038 0.3156 ± 0.0091 0.0
�8 . . . . . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0
109Ase�2⌧ . . . . . . 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 �0.1

likelihood. The residuals in both T E and EE are similar to those
from Plik. The main di↵erence can be seen at low multipoles
in the EE spectrum, where CamSpec shows a higher dispersion,
consistent with the error model, though there are several high
points at ` ⇡ 200 corresponding to the minimum in the EE spec-
trum, which may be caused by small errors in the subtraction
of polarized Galactic emission using 353 GHz as a foreground
template (and there are also di↵erences in the covariance matri-
ces at high multipoles caused by di↵erences in the methods used
in CamSpec and Plik to estimate noise). Generally, cosmolog-
ical parameters determined from the CamSpec likelihood have
smaller formal errors than those from Plik because there are no
nuisance parameters describing polarized Galactic foregrounds
in CamSpec.

3.3.3. Consistency of cosmological parameters from the TT ,
T E, and EE spectra

The consistency between parameters of the base ⇤CDM model
determined from the Plik temperature and polarization spec-
tra are summarized in Table 3 and in Fig. 6. As pointed out by
Zaldarriaga et al. (1997) and Galli et al. (2014), precision mea-
surements of the CMB polarization spectra have the potential to
constrain cosmological parameters to higher accuracy than mea-
surements of the TT spectra because the acoustic peaks are nar-
rower in polarization and unresolved foreground contributions at
high multipoles are much lower in polarization than in temper-
ature. The entries in Table 3 show that cosmological parameters
that do not depend strongly on ⌧ are consistent between the TT
and T E spectra, to within typically 0.5� or better. Furthermore,
the cosmological parameters derived from the T E spectra have
comparable errors to the TT parameters. None of the conclu-
sions in this paper would change in any significant way were we
to use the T E parameters in place of the TT parameters. The
consistency of the cosmological parameters for base ⇤CDM be-
tween temperature and polarization therefore gives added confi-
dence that Planck parameters are insensitive to the specific de-
tails of the foreground model that we have used to correct the
TT spectra. The EE parameters are also typically within about
1� of the TT parameters, though because the EE spectra from
Planck are noisier than the TT spectra, the errors on the EE pa-
rameters are significantly larger than those from TT . However,
both the T E and EE likelihoods give lower values of ⌧, As and
�8, by over 1� compared to the TT solutions. Noticee that the

T E and EE entries in Table 3 do not use any information from
the temperature in the low-multipole likelihood. The tendency
for higher values of �8, As, and ⌧ in the Planck TT+lowP solu-
tion is driven, in part, by the temperature power spectrum at low
multipoles.

Columns [4] and [5] of Table 3 compare the parameters
of the Planck TT likelihood with the full Planck TT,T E, EE
likelihood. These are in agreement, shifting by less than 0.2�.
Although we have emphasized the presence of systematic ef-
fects in the Planck polarization spectra, which are not accounted
for in the errors quoted in column [4] of Table 3, the consis-
tency of the Planck TT and Planck TT,T E, EE parameters pro-
vides strong evidence that residual systematics in the polariza-
tion spectra have little impact on the scientific conclusions in this
paper. The consistency of the base ⇤CDM parameters from tem-
perature and polarization is illustrated graphically in Fig. 6. As a
rough rule-of-thumb, for base ⇤CDM, or extensions to ⇤CDM
with spatially flat geometry, using the full Planck TT,T E, EE
likelihood produces improvements in cosmological parameters
of about the same size as adding BAO to the Planck TT+lowP
likelihood.

3.4. Constraints on the reionization optical depth parameter ⌧

The reionization optical depth parameter ⌧ provides an important
constraint on models of early galaxy evolution and star forma-
tion. The evolution of the inter-galactic Ly↵ opacity measured in
the spectra of quasars can be used to set limits on the epoch of
reionization (Gunn & Peterson 1965). The most recent measure-
ments suggest that the reionization of the inter-galactic medium
was largely complete by a redshift z ⇡ 6 (Fan et al. 2006). The
steep decline in the space density of Ly↵-emitting galaxies over
the redshift range 6 <⇠ z <⇠ 8 also implies a low redshift of reion-
ization (Choudhury et al. 2015). As a reference, for the Planck
parameters listed in Table 3, instantaneous reionization at red-
shift z = 7 results in an optical depth of ⌧ = 0.048.

The optical depth ⌧ can also be constrained from observa-
tions of the CMB. The WMAP9 results of Bennett et al. (2013)
give ⌧ = 0.089 ± 0.014, corresponding to an instantaneous red-
shift of reionization zre = 10.6 ± 1.1. The WMAP constraint
comes mainly from the EE spectrum in the multipole range
` = 2–6. It has been argued (e.g., Robertson et al. 2013, and ref-
erences therein) that the high optical depth reported by WMAP
cannot be produced by galaxies seen in deep redshift surveys,
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DM phenomenology often requires
• New force mediators (scalar, vector, ….) in order 

to solve some puzzles in the standard collision 
less CDM paradigm 

• Extra particles in the dark sector (excited DM, 
dark radiation, force mediators, etc.) often used 
for phenomenological reasons 

• Any good organizing principles for these extra 
particles ? 

• Answer : Dark gauge symmetry (dark gauge 
boson/dark Higgs appear naturally, their 
dynamics is completely fixed by gauge principle)

14



DM with dark gauge symmetries
• SM based on Poincare + local gauge symmetry 

within 4-dim QFT : extremely successful and 
provides qualitative answers to light neutrino 
masses, nonobservation of proton (Lepton # 
and baryon # : accidental symmetry of the 
renormalizable SM, and broken only by higher 
dim operators)  

• DM : either absolutely stable or long lived (could 
be due to local gauge symmetry or some 
accidental symmetry) and both can be 
accommodated by local dark gauge symmetries
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Z2 sym as an example

• Simplest DM model in terms of # of new d.o.f. 
• Very popular alternative to SUSY LSP 
• But where does this Z2 come from ? 
• Global or Local ? 
• Global Z2 probably cannot make S love long 

enough due to Z2 breaking dim-5 operator
16

3

not consider dim-3 operators, XRH†H or XIH†H, as-
suming the global dark symmetry GX is broken only by

nonrenormalizable operators.
Then the lifetime of XR or XI decaying into a pair or

photons would be

�(XR(or XI) ! ��) ⇠ 1

4⇡

✓
e2

M
Pl

◆
2

m3

X ⇠ 10�38

✓
mX(GeV)

100

◆
3

GeV (3)

This decay rate should be smaller than 10�52GeV, which
is possible only if mX . O(10) keV. If these nonrenor-
malizable operators are induced at lower energy scale
⇤ < M

Pl

, then the DM mass should be lighter than the
above estimate, scaled by (⇤/M

Pl

)2/3. Axion or light di-
lation DM is a good example of this. If these operators
were allowed with O(M

Planck

), it would be disastrous for
dark matter physics.

The above argument also applies to global Z
2

symme-
try which is invoked very often to stabilize the scalar dark
matter S with the following renormalizable lagrangian :

L =
1

2
@µS@

µS � 1

2
m2

SS
2 � �S

4!
S4 � �SH

2
S2H†H.

The Planck scale suppressed dim-5 operators will make
the weak scale dark matter S decay very fast in this
model too. Namely global Z

2

discrete symmetry is not
strong enough to guarantee the stability or longevity of
the scalar dark matter. This is also true for the case of
fermion dark matter, as described in the following sec-
tion.

Local dark gauge symmetry

If dark symmetry U(1)X is unbroken, then the scalar
dark mater will be absolutely stable and there will be a
long range dark force between dark matters. The mass-
less dark photon can contribute to the extra dark radia-
tion at the level of ⇠ 0.06, making slight increase of the

SM prediction for�N
e↵

towards the WMAP9 data. This
issue has been addressed in detail in our recent paper [2],
and we don’t describe it here in any more detail.

If dark symmetry U(1)X is a local symmetry that is
broken spontaneously by h�Xi = v� 6= 0, then the e↵ect
would be similar to the global symmetry breaking with
suitable changes of couplings. The dim-5 operators which
were dangerous in case of global dark symmetry are now
replaced by dim-6 operators since the global dark sym-
metry is implemented to local dark symmetry :

L =
1

M2

Pl

�†
XXO(4)

SM

. (4)

After �X develops nonzero VEV, this operator predicts
that the CDM lifetime is long enough to be safe from
cosmological constraints: However there appears a dim-4
operator which is a disaster for the DM longevity:

L = �XH2�†
XXH†H +H.c. (5)

After the U(1)X and EWSB, this operator induces a
nonzero VEV for X as well as X ! hh so that X can no
longer be a good CDM candidate.

In order to forbid the above dangerous dim-4 operator,
one has to assign di↵erent U(1)X charges to X and �X :
QX(X) = 1, QX(�X) = 2, for example. Then the model
would possess discrete local Z

2

symmetry after U(1)X
breaking, and the lightest U(1)X -charged particle would
be absolutely stable due to the local Z

2

symmetry.

L = L
SM

� 1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫ +Dµ�
†
XDµ�X � �X

4

⇣
�†
X�X � v2�

⌘
2

+DµX
†DµX �m2

XX†X

� �X

4

�
X†X

�
2 �

�
µX2�† +H.c.

�
� �XH

4
X†XH†H � ��XH

4
�†
X�XH†H � �XH

4
X†X�†

X�X (6)

Due to the µ term, the mass degeneracy between XR and
XI is lifted, and also there could be CP violation from
the µ phase. The model is not so simple compared with
the usual Z

2

scalar CDM model:

L =
1

2
@µS@

µS � 1

2
m2

SS
2 � �S

4!
S4 � �SH

2
S2H†H.

Dark matter phenomenology in the model (6) is very rich
and beyond the scope of this letter [1]. On the other
hand, Higgs phenomenology is very simple. There will be
two neutral Higgs-like scalar bosons, the signal strengths
of which are less than 1 independent of decay channels.



Fate of DM w/ global Z2

• NB: a very light scalar (such as axion) can be 
long lived enough to be a good DM

17

Consider Z2 breaking operators such as

1

MPlanck
SOSM

The lifetime of the Z2 symmetric scalar CDM S is roughly given by

�(S) ⇠ mS

M2
Planck

⇠ (

mS

100GeV

)10

�37GeV

The lifetime is too short for 100 GeV DM

keeping dim-4 SM 
operators only

33



Higgs could be harmful to DM
• Spontaneously broken local U(1)X can do the 

job to a certain extent, but here still is a problem

18

Let us assume a local U(1)X is spontaneously broken by h�Xi 6= 0 with

QX(�X) = QX(X) = 1

Then, there are two types of dangerous operators:

�†
XXH†H, and �†

XXO(dim�4)
SM

Problematic ! Perfectly fine !



• This type of argument applies to all DM models 
with ad hoc Z2 symmetries, DM being scalar, 
fermion or vector boson 

• One way to avoid this problem is to make a 
judicious assignments of dark charges to the 
dark sector fields, thereby Z2 being a subgroup 
of local U(1)X 

• Local U(1)X guarantees the stability of DM even 
in the presence of higher dimensional operators 

• One can also consider local Z3 from U(1)X
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Scalar dark matter stabilized by local Z2 symmetry

and the INTEGRAL 511 keV � ray

P. Ko⇤ and Wan-Il Park†

School of Physics, KIAS, Seoul 130-722, Korea

(Dated: February 13, 2013)

We construct a scalar dark matter model where local Z2 symmetry guarantees the stability of

scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2

symmetry, the dark matter appears from a complex scalar which has two real fields. After the

U(1)X ! Z2 symmetry breaking, the mass degeneracy between ..................

INTRODUCTION

If Z2 symmetry were global symmetry, it would be bro-
ken by quantum gravity e↵ects which can be described
by MPlanck scale suppressed nonrenormalizable operators
such as

1

MPlanck

�
SFµ⌫F

µ⌫ , S(H†H)2, ..
�

(1)

MODEL

Let us assume the dark sector has a local U(1)X gauge
which is spontaneously broken into local Z2 symmetry.
This can be achieved with two complex scalar fields �X

and X ⌘ XR + iXI in the dark sector with the U(1)X
charges equal to 2 and 1, respectively, in the following
lagrangian:

QX(�) = 2, QX(X) = 1

L = LSM +�1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫ +Dµ�
†
XDµ�X � �X

4

⇣
�†
X�X � v2�

⌘2
+DµX

†DµX �m2
XX†X

� �X

4

�
X†X

�2 �
�
µX2�† +H.c.

�
� �XH

4
X†XH†H � ��XH

4
�†
X�XH†H � �XH

4
X†X�†

X�X (2)

After the U(1)X symmetry breaking by nonzero h�Xi =
v� 6= 0, the µ�term generates

(X2 +H.c.) = 2(X2
R �X2

I )

which lifts the mass degeneracy between XR and XI .
The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as

DµX = @µX � igXXµX.

In terms of XI and XR, one has

DµX
†DµX = @µXR@

µXR + @µXI@
µXI + 2igXXµ (XR@µXI �XI@µXR) + g2XXµX

µ(X2
R +X2

I ) (3)

If the mass di↵erence of XR and XI is of ⇠ O(1) MeV
and the lifetime of the heavier state is ⇠ 1026�29 sec,
then

XR ! XI�
⇤
h followed by �⇤

h ! � ! e+e�

could generates the positrons which would be a source of
511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-
bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp
contrast with the case of global Z2. However the local
Z2 symmetry requires extra fields compared with a sin-
glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out
the particle spectra at the tree level:

m2
X = g2Xv2�, (4)
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and the lifetime of the heavier state is ⇠ 1026�29 sec,
then

XR ! XI�
⇤
h followed by �⇤

h ! � ! e+e�

could generates the positrons which would be a source of
511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-
bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp
contrast with the case of global Z2. However the local
Z2 symmetry requires extra fields compared with a sin-
glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out
the particle spectra at the tree level:

m2
X = g2Xv2�, (4)

etc.

Unbroken Local Z2 symmetry

The heavier state decays into the lighter state

The local Z2 model is not that simple as the usual 
Z2 scalar DM model (also for the fermion CDM)
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scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2

symmetry, the dark matter appears from a complex scalar which has two real fields. After the

U(1)X ! Z2 symmetry breaking, the mass degeneracy between ..................

INTRODUCTION

If Z2 symmetry were global symmetry, it would be bro-
ken by quantum gravity e↵ects which can be described
by MPlanck scale suppressed nonrenormalizable operators
such as

1

MPlanck
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(1)

MODEL

Let us assume the dark sector has a local U(1)X gauge
which is spontaneously broken into local Z2 symmetry.
This can be achieved with two complex scalar fields �X

and X ⌘ XR + iXI in the dark sector with the U(1)X
charges equal to 2 and 1, respectively, in the following
lagrangian:

QX(�) = 2, QX(X) = 1

L = LSM +�1
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After the U(1)X symmetry breaking by nonzero h�Xi =
v� 6= 0, the µ�term generates

(X2 +H.c.) = 2(X2
R �X2

I )

which lifts the mass degeneracy between XR and XI .
The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as

DµX = @µX � igXXµX.

In terms of XI and XR, one has

DµX
†DµX = @µXR@

µXR + @µXI@
µXI + 2igXXµ (XR@µXI �XI@µXR) + g2XXµX

µ(X2
R +X2

I ) (3)

If the mass di↵erence of XR and XI is of ⇠ O(1) MeV
and the lifetime of the heavier state is ⇠ 1026�29 sec,
then

XR ! XI�
⇤
h followed by �⇤

h ! � ! e+e�

could generates the positrons which would be a source of
511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-
bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp
contrast with the case of global Z2. However the local
Z2 symmetry requires extra fields compared with a sin-
glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out
the particle spectra at the tree level:

m2
X = g2Xv2�, (4)

SBaek, PKo, WIPark, 1407.6588, PLB

(A model without phi was used by several groups for 511 keV and PAMELA)



New windows for DM phenomenology
• DM (+ excited DM) + dark gauge boson + dark 

Higgs 
• Singlet portals [Higgs portal, kinetic mixing for 

U(1)X, RH neutrino portal] thermalize DM 
efficiently, and provide tools for (in)direct 
detections and collider searches for DM      
(SBaek, PKo, WIPark, 1303.4280, JHEP, and other papers for 
collider searches for Higgs portal DM)  

• In particular DM+DM > DG’s, DH’s open a new 
window for DM phenomenology
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Unbroken Local Dark Sym
• Local dark symmetry can be either confining 

(like QCD) or not 
• For confining dark symmetry, gauge fields will 

confine and there is no long range dark force, 
and DM will be composite baryons/mesons in 
the hidden sector 

• Otherwise, there could be a long range dark 
force that is constrained by large/small scale 
structures and/or dark matter self interactions, 
and contributes to dark radiation
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Spon. Broken local dark sym
• If dark sym is spont. broken, DM will decay in 

general, unless there is a residual unbroken 
(discrete) subgroup of dark gauge symmetry 

• There will be a singlet scalar after spontaneous 
breaking of dark gauge symmetry, which mixes 
with the SM Higgs boson 

• There will be at least two neutral scalars (and no 
charged scalars) in this case 

• Vacuum stability improved by the new scalar and 
modified Higgs inflation assisted by Higgs portal 

• Higgs Signal strengths universally reduced from 
“ONE” 
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Interacting DM & DR
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- Light sterile fermion DR + Dark photon 
- Nonabelian DM + DR



A Light Dark Photon
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• Lagrangian 

• DM    (+1), dark radiation    (+2), scalar(+2) 
• U(1) symmetry (unbroken), massless dark 

photon  
•     is responsible for the DM relic density 

•     can decay into     and N.

L =� 1
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Dark Radiation δNeff

• Effective Number of Neutrinos, Neff 

• In SM cosmology, Neff =3.046, Neutrinos decouple 
around MeV, and then stream freely. 

• Cosmological bounds

26

⇢R =

"
1 +Ne↵ ⇥ 7

8

✓
4

11

◆4/3
#
⇢� ,

⇢� / T 4
�

Joint CMB+BBN, 95% CL preferred ranges

Planck Collaboration: Cosmological parameters

Fig. 36. Constraints in the !b–Ne↵ plane from Planck and
Planck+BAO data (68 % and 95 % contours) compared to the
predictions of BBN given primordial element abundance mea-
surements. We show the 68 % and 95 % confidence regions de-
rived from 4He bounds compiled by Aver et al. (2013) and from
deuterium bounds compiled by Cooke et al. (2014). In the CMB
analysis, Ne↵ is allowed to vary as an additional parameter to
base ⇤CDM, with YP fixed as a function of !b and Ne↵ accord-
ing to BBN predictions. These constraints assume no significant
lepton asymmetry.

abundance measurements derived from emission lines from low-
metallicity H ii regions are notoriously di�cult and prone to sys-
tematic errors. As a result, many discrepant helium abundance
measurements can be found in the literature. Izotov et al. (2014)
have reported a helium abundance measurement of YBBN

P =
0.2551 ± 0.0022, which is discrepant with the base ⇤CDM pre-
dictions by 3.4�. Such a high helium fraction could be ac-
commodated by increasing Ne↵ (see Fig. 36 and Sect. 6.5.3).
However, at present it is not clear whether the error quoted by
Izotov et al. (2014) accurately reflects systematic errors, includ-
ing the error in extrapolating to zero metallicity.

Historically, deuterium abundance measurements have
shown excess scatter over that expected from statistical er-
rors indicating the presence of systematic errors in the obser-
vations. Figure 35 shows the data compilation of Iocco et al.
(2009), yDP = 2.87 ± 0.22 (68 % CL), which includes mea-
surements based on damped Ly↵ and Lyman limit systems.
We also show the more recent results by Cooke et al. (2014)
(see also Pettini & Cooke 2012) based on their observations of
low-metallicity damped Ly↵ absorption systems in two quasars
(SDSS J1358+6522, zabs = 3.06726; SDSS J1419+0829, zabs =
3.04973) and a reanalysis of archival spectra of damped Ly↵
systems in three further quasars that satisfy strict selection cri-
teria. The Cooke et al. (2014) analysis gives yDP = 2.53 ± 0.04
(68 % CL), somewhat lower than the central Iocco et al. (2009)
value, but with a much smaller error. The Cooke et al. (2014)
value is almost certainly the more reliable measurement, as ev-
idenced by the consistency of the deuterium abundances of the
five systems in their analysis. The Planck base ⇤CDM predic-
tions of Eq. (74) lie within 1� of the Cooke et al. (2014) result.
This is a remarkable success for the standard theory of BBN.

It is worth noting that the Planck data are so accurate that !b
is insensitive to the underlying cosmological model. In our grid

of extensions to base ⇤CDM the largest degradation of the error
in !b is in models that allow Ne↵ to vary. In these models, the
mean value of !b is almost identical to that for base ⇤CDM, but
the error on !b increases by about 30 %. The value of !b is sta-
ble to even more radical changes to the cosmology, for example,
adding general isocurvature modes (Planck Collaboration XX
2015).

If we relax the assumption that Ne↵ = 3.046 (but adhere to
the hypothesis that electron neutrinos have a standard distribu-
tion with a negligible chemical potential), BBN predictions de-
pend on both parameters (!b,Ne↵). Following the same method-
ology as in Sect. 6.4.4 of PCP13, we can identify the region of
the (!b,Ne↵) parameter space that is compatible with direct mea-
surements of the primordial helium and deuterium abundances,
including the BBN theoretical errors. This is illustrated in Fig. 36
for the Ne↵ extension to base ⇤CDM. The region preferred by
CMB observations lies at the intersection between the helium
and deuterium abundance 68 % CL preferred regions and is com-
patible with the standard value of Ne↵ = 3.046. This confirms the
beautiful agreement between CMB and BBN physics. Figure 36
also shows that the Planck polarization data helps in reducing
the degeneracy between !b and Ne↵ .

We can actually make a more precise statement by combin-
ing the posterior distribution on (!b,Ne↵) obtained for Planck
with that inferred from helium and deuterium abundance, in-
cluding observational and theoretical errors. This provides joint
CMB+BBN predictions on these parameters. After marginaliz-
ing over !b, the 95 % CL preferred ranges for Ne↵ are

Ne↵ =

8>>>>><
>>>>>:

3.11+0.59
�0.57 He+Planck TT+lowP,

3.14+0.44
�0.43 He+Planck TT+lowP+BAO,

2.99+0.39
�0.39 He+Planck TT,TE,EE+lowP,

(75)

when combining Planck with the helium abundance estimated
by Aver et al. (2013), or

Ne↵ =

8>>>>><
>>>>>:

2.95+0.52
�0.52 D+Planck TT+lowP,

3.01+0.38
�0.37 D+Planck TT+lowP+BAO,

2.91+0.37
�0.37 D+Planck TT,TE,EE+lowP,

(76)

when combining with the deuterium abundance measured
by Cooke et al. (2014). These bounds represent the best
currently-available estimates of Ne↵ and are remarkably consis-
tent with the standard model prediction.

The allowed region in (!b,Ne↵) space does not increase sig-
nificantly when other parameters are allowed to vary at the same
time. From our grid of extended models, we have checked that
this conclusion holds in models with neutrino masses, tensor
fluctuations, or running of the scalar spectral index.

6.5.2. Constraints from Planck and deuterium observations
on nuclear reaction rates

We have seen that primordial element abundances inferred
from direct observations are consistent with those inferred from
Planck data under the assumption of standard BBN. However,
the Planck determination of !b is so precise that the theoreti-
cal errors in the BBN predictions are now a dominant source
of uncertainty. As noted by Cooke et al. (2014), one can begin
to think about using CMB measurements together with accurate
deuterium abundance measurements to learn about the underly-
ing BBN physics.
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�8. As mentioned in Sect. 6.4.2, massive sterile neutrinos of-
fer a possible solution to reactor neutrino oscillation anoma-
lies (Kopp et al. 2013; Giunti et al. 2013) and this has led to
significant recent interest in this class of models (Wyman et al.
2014; Battye & Moss 2014; Hamann & Hasenkamp 2013;
Leistedt et al. 2014; Bergström et al. 2014; MacCrann et al.
2014). Alternatively, active neutrinos could have significant de-
generate masses above the minimal baseline value together with
additional massless particles contributing to Ne↵ . Many more
complicated scenarios could also be envisaged.

In the case of massless radiation density, the cosmologi-
cal predictions are independent of the actual form of the dis-
tribution function since all particles travel at the speed of light.
However, for massive particles the results are more model de-
pendent. To formulate a well-defined model, we follow PCP13
and consider the case of one massive sterile neutrino parameter-
ized by me↵

⌫, sterile ⌘ (94.1⌦⌫,sterileh2) eV, in addition to the two
approximately massless and one massive neutrino of the base-
line model. For thermally-distributed sterile neutrinos, me↵

⌫, sterile
is related to the true mass via

me↵
⌫, sterile = (Ts/T⌫)3mthermal

sterile = (�Ne↵)3/4mthermal
sterile , (63)

and for the cosmologically-equivalent Dodelson-Widrow (DW)
case (Dodelson & Widrow 1994) the relation is given by

me↵
⌫, sterile = �s mDW

sterile , (64)

with �Ne↵ = �s. We impose a prior on the physical thermal
mass, mthermal

sterile < 10 eV, when generating parameter chains, to
exclude regions of parameter space in which the particles are
so massive that their e↵ect on the CMB spectra is identical to
that of cold dark matter. Although we consider only the specific
case of one massive sterile neutrino with a thermal (or DW) dis-
tribution, our constraints will be reasonably accurate for other
models, for example eV-mass particles produced as non-thermal
decay products (Hasenkamp 2014).

Figure 32 shows that although Planck is perfectly consistent
with no massive sterile neutrinos, a significant region of param-
eter space with fractional �Ne↵ is allowed, where �8 is lower
than in the base ⇤CDM model. This is also the case for massless
sterile neutrinos combined with massive active neutrinos. In the
single massive sterile model, the combined constraints are

Ne↵ < 3.7

me↵
⌫, sterile < 0.52 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(65)
The upper tail of me↵

⌫, sterile is largely associated with high physical
masses near to the prior cuto↵; if instead we restrict to the region
where mthermal

sterile < 2 eV the constraint is

Ne↵ < 3.7

me↵
⌫, sterile < 0.38 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(66)
Massive sterile neutrinos with mixing angles large enough to
help resolve the reactor anomalies would typically imply full
thermalization in the early Universe, and hence give �Ne↵ = 1
for each additional species. Such a high value of Ne↵ , espe-
cially combined with msterile ⇡ 1 eV, as required by reactor
anomaly solutions, were virtually ruled out by previous cos-
mological data (Mirizzi et al. 2013; Archidiacono et al. 2013a;
Gariazzo et al. 2013). This conclusion is strengthened by the
analysis presented here, since Ne↵ = 4 is excluded at greater
than 99 % confidence. Unfortunately, there does not appear to be

a consistent resolution to the reactor anomalies, unless thermal-
ization of the massive neutrinos can be suppressed, for example,
by large lepton asymmetry, new interactions, or particle decay
(see Gariazzo et al. 2014; Bergström et al. 2014, and references
therein).

We have also considered the case of additional radiation and
degenerate massive active neutrinos, with the combined con-
straint:

Ne↵ = 3.2 ± 0.5
X

m⌫ < 0.32 eV

9>>=
>>; 95%, Planck TT+lowP+lensing+BAO.

(67)
Again Planck shows no evidence for a deviation from the base
⇤CDM model.

6.4.4. Neutrino models and tension with external data

The extended models discussed in this section allow Planck to be
consistent with a wider range of late-Universe parameters than in
base ⇤CDM. Figure 33 summarizes the constraints on ⌦m, �8,
and H0 for the various models that we have considered. The in-
ferred Hubble parameter can increase or decrease, as required to
maintain the observed acoustic scale, depending on the relative
contribution of additional radiation (changing the sound hori-
zon) and neutrino mass (changing mainly the angular diameter
distance). However, all of the models follow similar degeneracy
directions in the ⌦m–�8 and H0–�8 planes, so these models re-
main predictive: large common areas of the parameter space are
excluded in all of these models. The two-parameter extensions
are required to fit substantially lower values of �8 without also
decreasing H0 below the values determined from direct measure-
ments, but the scope for doing this is clearly limited.

External data sets need to be reanalysed consistently in ex-
tended models, since the extensions change the growth of struc-
ture, angular distances, and the matter-radiation equality scale.
For example, the dashed lines in Fig. 33 shows how di↵erent
models a↵ect the CFHTLenS galaxy weak lensing constraints
from Heymans et al. (2013) (see Sect. 5.5.2), when restricted
to the region of parameter space consistent with the Planck
acoustic scale measurements and the local Hubble parameter.
The filled green, grey, and red contours in Fig. 33 show the
CMB constraints on these models for various data combina-
tions. The tightest of these constraints comes from the Planck
TT+lowP+lensing+BAO combination. The blue contours show
the constraints in the base ⇤CDM cosmology. The red contours
are broader than the blue contours and there is greater overlap
with the CFHTLenS contours, but this o↵ers only a marginal
improvement compared to base ⇤CDM (compare with Fig. 18;
see also the discussions in Leistedt et al. 2014 and Battye et al.
2014). For each of these models, the CFHTLenS results prefer
lower values of �8. Allowing for a higher neutrino mass lowers
�8 from Planck, but does not help alleviate the discrepancy with
the CFHTLenS data as the Planck data prefer a lower value of
H0. A joint analysis of the CFHTLenS likelihood with Planck
TT+lowP shows a ��2 < 1 preference for the extended neu-
trino models compared to base ⇤CDM, and the fits to Planck
TT+lowP are worse in all cases. In base ⇤CDM the CFHTLenS
data prefer a region of parameter space ��2 ⇡ 4 away from the
Planck TT+lowP+CFHTLenS joint fit, indicative of the tension
between the data sets. This is only slightly relieved to ��2 ⇡ 3
in the extended models.

In summary, modifications to the neutrino sector alone can-
not easily explain the discrepancies between Planck and other
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Dark Radiation δNeff

• Massless dark photon and fermion will contribute

27

δNeff=0.4~1 for relaxing tension in Hubble constant

where T⌫ is neutrino’s temperature,

g⇤s counts the e↵ective number of dof for entropy density in SM,

gD⇤s denotes the e↵ective number of dof being in kinetic equilibrium with Vµ.

For instance, when T dec � mt ' 173GeV for |��H | ⇠ 10

�6
, we can estimate

�Ne↵ at the BBN epoch as

�Ne↵ =

22
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Diffusion Damping
• Dark Matter scatters with radiation, which induces 

new contributions in the cosmological perturbation 
equations,
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�̇� = �✓� + 3�̇,

✓̇� = k2 �H✓� + S�1µ̇ (✓ � ✓�),

✓̇ = k2 + k2
✓
1

4
� � � 

◆
� µ̇ (✓ � ✓�),

where dot means derivative over conformal time d⌧ ⌘ dt/a ( a is the scale
factor), ✓ and ✓� are velocity divergences of radiation  and DM �’s, k is
the comoving wave number,  is the gravitational potential, � and � are the
density perturbation and the anisotropic stress potential of  , and H ⌘ ȧ/a is
the conformal Hubble parameter. Finally, the scattering rate and the density
ratio are defined by µ̇ = an�h�� ci and S = 3⇢�/4⇢ , respectively.



Scattering Cross Section

• In general, the cross section could have different 
temperature dependence, depending on the 
underlying particle models.
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3

to

✓̇� = k2 �H✓� + S�1µ̇ (✓ � ✓�) , (7)

✓̇ = k2 + k2
✓
1

4
� � � 

◆
� µ̇ (✓ � ✓�) , (8)

where dot means derivative over conformal time d⌧ ⌘
dt/a ( a is the scale factor), ✓ and ✓� are velocity di-
vergences of radiation  and DM �’s, k is the comoving
wave number,  is the gravitational potential, � and � 
are the density perturbation and the anisotropic stress
potential of  , and H ⌘ ȧ/a is the conformal Hubble
parameter. Finally, the scattering rate and the density
ratio are defined by µ̇ = an�h�� ci and S = 3⇢�/4⇢ ,
respectively.

The averaged cross section h�� i can be estimated
from the squared matrix element for � ! � :

|M|2 ⌘ 1

4

X

pol

|M|2 =
2g4X
t2

⇥
t2 + 2st+ 8m2

�E
2

 

⇤
, (9)

where the Mandelstam variables are t = 2E2

 (cos ✓ � 1)

and s = m2

� + 2m�E , where ✓ is the scattering angle,
and E is the energy of incoming  in the rest frame of
�. Integrated with a temperature-dependent Fermi-Dirac
distribution for E , we find that h�� i goes roughly as
g4X/(4⇡T 2

D).
One key feature is that h�� i is actually increasing as

the universe is expanding, which provides a mechanism
to a↵ect the matter power spectrum (k & 0.1h/Mpc).
And due to the temperature dependences of H/a ⇠ T 2 at
radiation-dominant era, H/a ⇠ T 3/2 in matter-dominant
era and S�1µ̇/a ⇠ T 2, the last term in Eq. 7 could be
equally important as H✓� and a↵ect all those scales that
enter horizon during radiation-dominant epoch. This
is achieved because of the massless mediator, the dark
photon. In the previous studies, only the cases for
h�� i / T 2 or h�� i / constant have been widely inves-
tigated [14, 15, 53], which would only a↵ect matter power
spectrum at small scales. More interestingly, the medi-
ator can also be the scattered radiation for non-abelian
gauge boson [10] or scalar [37], which can have very di↵er-
ent temperature dependence and change even large scale
structures (see also Refs. [47, 48] for general discussions).

The elastic scattering of � + Vµ ! � + Vµ, which is
similar to Compton scattering e�+� ! e�+�, is highly
suppressed as its cross section is proportional to g4X/m2

�,
in comparison with g4X/E2

 for �- scattering. Unlessm�

is relatively light, say around MeV scale, �-Vµ scattering
can be neglected through our discussion of late universe.

NUMERICAL RESULTS

We have modified the public Boltzmann code
CLASS [54] and implemented the above equations,

Eqs. (7) and (8). We treat dark radiation  as per-
fect fluid with anisotropic stress � = 0 since  ’s self-
interaction rate ⇠ g4T is much larger than H at the low
temperature we are interested in. The modification of
✓�’s evolution has an impact on �’s density perturbation
through

�̇� = �✓� + 3�̇, (10)

where � is the scalar perturbation in the metric within
conformal Newtonian gauge. We shall show that the in-
teraction between DM and DR cause suppression in the
matter power spectrum through di↵usion damping [55–
57].
We illustrate the physical e↵ect in Fig. 1. The up-

per panel shows the matter power spectrum P (k), solid
(dashed) line for ⇤CDM (interacting DM) case, and the
lower panel shows the ratio. We have chosen m� '
100GeV and g2X ' 10�8. It can be clearly seen that
the matter power spectrum is suppressed, therefore gives
a smaller �

8

. For the parameters we used, the suppres-
sion is about 10% at k ' h/8Mpc, enough for relaxing
the tension between Planck and weak lensing data. Un-
like the scenarios [14–16, 58] where DM-DR scattering
h�� i has positive-power dependence on the tempera-
ture, this model has negative-power dependence and pre-
dicts smooth suppression.
We take the central values of six parameters of ⇤CDM

from Planck [1],

⌦bh
2 = 0.02227,⌦ch

2 = 0.1184, 100✓
MC

= 1.04106,

⌧ = 0.067, ln
�
1010As

�
= 3.064, ns = 0.9681, (11)

which gives �
8

= 0.817 in vanilla ⇤CDM cosmology.
With the same input as above, now we take �N

e↵

' 0.53,
m� ' 100GeV and g2X ' 10�8 in the interacting DM
case, we have �

8

' 0.744 which is much closer to the value
�
8

' 0.730 given by weak lensing survey CFHTLenS [3].
Dedicated analysis with Markov Chain Monte Carlo for

statistical inference of the precise parameters is beyond
our scope in this paper. However, we can understand the
physics of collisional damping and roughly estimate the
size of gX by comparing H and S�1µ̇ in Eq. (7),

S�1µ̇

H =
S�1n�h�� ci

H/a
⇠ TDn h�� ci

m�H
& 1, (12)

where the Hubble parameter H is given by T 2/Mpl

(Mpl ' 1018GeV) in radiation-dominant era. Requiring
the above inequality hold until matter-dominant time, we
can obtain

g2X ⇠ T�
TD

✓
m�

Mpl

◆
1/2

. (13)

Since T�/TD ⇠ 2 as shown in Eq. (6), we would have
g2X ⇠ 10�8 for m� ' 100GeV. It is also evident that



Effects on LSS
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Parametrize the cross section ratio

u0 ⌘

�� 
�Th

� 
100GeV

m�

�
, u�(T ) = u0

✓
T

T0

◆�
,

where �Th is the Thomson cross section, 0.67⇥ 10

�24
cm

�2
.

Y.Tang,1603.00165(PLB)
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Numerical Results
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We take the central values of six parameters of ⇤CDM from Planck,

⌦bh
2
= 0.02227, Baryon density today

⌦ch
2
= 0.1184, CDM density today

100✓MC = 1.04106, 100⇥ approximation to r⇤/DA

⌧ = 0.067, Thomson scattering optical depth

ln

�
10

10As

�
= 3.064, Log power of primordial curvature perturbations

ns = 0.9681, Scalar Spectrum power-law index

which gives �8 = 0.817 in vanilla ⇤CDM cosmology.

With the same input as above, now take

�Ne↵ ' 0.53,m� ' 100GeV and g2X ' 10

�8

in the interacting DM case, we have �8 ' 0.744.

Modified Boltzmann code CLASS(Blas&Lesgourgues&Tram)
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DM-DR scattering causes diffuse damping at relevant scales,  
resolving σ8 problem
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3

to

✓̇� = k2 �H✓� + S�1µ̇ (✓ � ✓�) , (7)

✓̇ = k2 + k2
✓
1

4
� � � 

◆
� µ̇ (✓ � ✓�) , (8)

where dot means derivative over conformal time d⌧ ⌘
dt/a ( a is the scale factor), ✓ and ✓� are velocity di-
vergences of radiation  and DM �’s, k is the comoving
wave number,  is the gravitational potential, � and � 
are the density perturbation and the anisotropic stress
potential of  , and H ⌘ ȧ/a is the conformal Hubble
parameter. Finally, the scattering rate and the density
ratio are defined by µ̇ = an�h�� ci and S = 3⇢�/4⇢ ,
respectively.

The averaged cross section h�� i can be estimated
from the squared matrix element for � ! � :

|M|2 ⌘ 1

4

X

pol

|M|2 =
2g4X
t2

⇥
t2 + 2st+ 8m2

�E
2

 

⇤
, (9)

where the Mandelstam variables are t = 2E2

 (cos ✓ � 1)

and s = m2

� + 2m�E , where ✓ is the scattering angle,
and E is the energy of incoming  in the rest frame of
�. Integrated with a temperature-dependent Fermi-Dirac
distribution for E , we find that h�� i goes roughly as
g4X/(4⇡T 2

D).
One key feature is that h�� i is actually increasing as

the universe is expanding, which provides a mechanism
to a↵ect the matter power spectrum (k & 0.1h/Mpc).
And due to the temperature dependences of H/a ⇠ T 2 at
radiation-dominant era, H/a ⇠ T 3/2 in matter-dominant
era and S�1µ̇/a ⇠ T 2, the last term in Eq. 7 could be
equally important as H✓� and a↵ect all those scales that
enter horizon during radiation-dominant epoch. This
is achieved because of the massless mediator, the dark
photon. In the previous studies, only the cases for
h�� i / T 2 or h�� i / constant have been widely inves-
tigated [14, 15, 53], which would only a↵ect matter power
spectrum at small scales. More interestingly, the medi-
ator can also be the scattered radiation for non-abelian
gauge boson [10] or scalar [37], which can have very di↵er-
ent temperature dependence and change even large scale
structures (see also Refs. [47, 48] for general discussions).

The elastic scattering of � + Vµ ! � + Vµ, which is
similar to Compton scattering e�+� ! e�+�, is highly
suppressed as its cross section is proportional to g4X/m2

�,
in comparison with g4X/E2

 for �- scattering. Unlessm�

is relatively light, say around MeV scale, �-Vµ scattering
can be neglected through our discussion of late universe.

NUMERICAL RESULTS

We have modified the public Boltzmann code
CLASS [54] and implemented the above equations,

Eqs. (7) and (8). We treat dark radiation  as per-
fect fluid with anisotropic stress � = 0 since  ’s self-
interaction rate ⇠ g4T is much larger than H at the low
temperature we are interested in. The modification of
✓�’s evolution has an impact on �’s density perturbation
through

�̇� = �✓� + 3�̇, (10)

where � is the scalar perturbation in the metric within
conformal Newtonian gauge. We shall show that the in-
teraction between DM and DR cause suppression in the
matter power spectrum through di↵usion damping [55–
57].
We illustrate the physical e↵ect in Fig. 1. The up-

per panel shows the matter power spectrum P (k), solid
(dashed) line for ⇤CDM (interacting DM) case, and the
lower panel shows the ratio. We have chosen m� '
100GeV and g2X ' 10�8. It can be clearly seen that
the matter power spectrum is suppressed, therefore gives
a smaller �

8

. For the parameters we used, the suppres-
sion is about 10% at k ' h/8Mpc, enough for relaxing
the tension between Planck and weak lensing data. Un-
like the scenarios [14–16, 58] where DM-DR scattering
h�� i has positive-power dependence on the tempera-
ture, this model has negative-power dependence and pre-
dicts smooth suppression.
We take the central values of six parameters of ⇤CDM

from Planck [1],

⌦bh
2 = 0.02227,⌦ch

2 = 0.1184, 100✓
MC

= 1.04106,

⌧ = 0.067, ln
�
1010As

�
= 3.064, ns = 0.9681, (11)

which gives �
8

= 0.817 in vanilla ⇤CDM cosmology.
With the same input as above, now we take �N

e↵

' 0.53,
m� ' 100GeV and g2X ' 10�8 in the interacting DM
case, we have �

8

' 0.744 which is much closer to the value
�
8

' 0.730 given by weak lensing survey CFHTLenS [3].
Dedicated analysis with Markov Chain Monte Carlo for

statistical inference of the precise parameters is beyond
our scope in this paper. However, we can understand the
physics of collisional damping and roughly estimate the
size of gX by comparing H and S�1µ̇ in Eq. (7),

S�1µ̇

H =
S�1n�h�� ci

H/a
⇠ TDn h�� ci

m�H
& 1, (12)

where the Hubble parameter H is given by T 2/Mpl

(Mpl ' 1018GeV) in radiation-dominant era. Requiring
the above inequality hold until matter-dominant time, we
can obtain

g2X ⇠ T�
TD

✓
m�

Mpl

◆
1/2

. (13)

Since T�/TD ⇠ 2 as shown in Eq. (6), we would have
g2X ⇠ 10�8 for m� ' 100GeV. It is also evident that



Residual Non-Abelian DM&DR
• Consider SU(N) Yang-Mills gauge fields and a Dark 

Higgs field  

• Take SU(3) as an example, 

• SU(3)    SU(2) 
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Aa
µt

a =
1

2

0

B@
A3

µ + 1p
3
A8

µ A1
µ � iA2

µ A4
µ � iA5

µ

A1
µ + iA2

µ �A3
µ + 1p

3
A8

µ A6
µ � iA7

µ

A4
µ + iA5

µ A6
µ + iA7

µ � 2p
3
A8

µ

1

CA .

�

h�i =
✓
0 0

v�p
2

◆T

,� =

✓
0 0

v� + � (x)p
2

◆T

,

The massive gauge bosons A

4,··· ,8
as dark matter obtain masses,

mA4,5,6,7
=

1

2

gv�, mA8
=

1p
3

gv�,

and massless gauge bosons A

1,2,3
µ . The physical scalar � can couple to A

4,··· ,8
µ

at tree level and to A

1,2,3
at loop level.

P.Ko&YT, 1609.02307

L = �1

4
F a
µ⌫F

aµ⌫ + (Dµ�)
† (Dµ�)� ��

�
|�|2 � v2�/2

�2
,



 
• 2N-1 massive gauge bosons: Dark Matter 
• (N-1)2-1 massless gauge bosons: Dark Radiation 
• mass spectrum
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SU(N) ! SU(N � 1)

mA(N�1)2,...,N2�2 =
1

2
gv�, mAN2�1 =

p
N � 1p
2N

gv�,

This can be proved by looking at the structure of fabc
. Divide the generators

ta into two subset,

a ⇢ [1, 2, ..., (N � 1)

2 � 1], a ⇢ [(N � 1)

2, ..., N2 � 1].

Since [ta, tb] = ifabctc for the first subset forms closed SU(N � 1) algebra, we

have fabc
= 0 when only one of a, b and c is from the second subset. If one

index is N2 � 1, then other two must be among the second subset to give no

vanishing fabc
, because tN

2�1
commutes with ta from SU(N � 1).



Phenomenology
• Self-scattering processes 

• Constraints
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A4 A5

A3

A1 A2

A4 A5

A3

A4 A5

�Ne↵ =
8

7

⇥
(N � 1)2 � 1

⇤
⇥ 0.055,

mA

Treh
⇠ ln


⌦bMP g4

⌦Xmp⌘

�
⇠ O(30).

g2 . T�

TA

✓
mA

MP

◆1/2

⇠ 10�7,

• N<6 if thermal 
• small coupling,  
• non-thermal production,  
• low reheating temperature

P.Ko&YT, 1609.02307

Schmaltz et al(2015) EW charged DM
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FIG. 3. Matter power spectrum P (k) (left) and ratio (right) with m� ' 10TeV and g2X ' 10�7,

in comparison with ⇤CDM. The black solid lines are for ⇤CDM and the purple dot-dashed lines

for interacting DM-DR case, with input parameters in Eq. 21. We can easily see that P (k) is

suppressed for modes that enter horizon at radiation-dominant era. Those little wiggles are due to

the well-known baryon acoustic oscillation.

clearly that power spectrum can be suppressed when DM-DR interaction is considered. We

have taken the central values of six parameters of ⇤CDM from Planck [10],

⌦bh
2 = 0.02227,⌦ch

2 = 0.1184, 100✓MC = 1.04106,

⌧ = 0.067, ln
�
1010As

�
= 3.064, ns = 0.9681, (21)

and treat neutrino mass the same way as Planck did with
P

m⌫ = 0.06eV, which gives

�8 = 0.815 in vanilla ⇤CDM cosmology. Together with the same inputs as above, we take

�Ne↵ ' 0.5, m� ' 10TeV and g2X ' 10�7 in the interacting DM-DR case, we have �8 ' 0.746

which is much closer to the value �8 ' 0.730 given by weak lensing survey CFHTLenS [12].

VI. CONCLUSION

In this paper, we have proposed a particle physics model in which vector dark matter

(VDM) and dark radiation (DR) have a common origin, namely a Yang-Mills dark sector. We

have explicitly shown an illustrating case where dark SU(3) gauge group is spontaneously

broken to its SU(2) subgroup. The residual massless gauge bosons constitute DR while

10



Results

• Within DM models with local dark gauge 
symmetry, we could increase Neff, H0 whereas 
making σ8 decrease, thereby relaxing the 
tension between H0 and σ8 
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FIG. 3. Matter power spectrum P (k) (left) and ratio (right) with m� ' 10TeV and g2X ' 10�7,

in comparison with ⇤CDM. The black solid lines are for ⇤CDM and the purple dot-dashed lines

for interacting DM-DR case, with input parameters in Eq. 21. We can easily see that P (k) is

suppressed for modes that enter horizon at radiation-dominant era. Those little wiggles are due to

the well-known baryon acoustic oscillation.

clearly that power spectrum can be suppressed when DM-DR interaction is considered. We

have taken the central values of six parameters of ⇤CDM from Planck [10],

⌦bh
2 = 0.02227,⌦ch

2 = 0.1184, 100✓MC = 1.04106,

⌧ = 0.067, ln
�
1010As

�
= 3.064, ns = 0.9681, (21)

and treat neutrino mass the same way as Planck did with
P

m⌫ = 0.06eV, which gives

�8 = 0.815 in vanilla ⇤CDM cosmology. Together with the same inputs as above, we take

�Ne↵ ' 0.5, m� ' 10TeV and g2X ' 10�7 in the interacting DM-DR case, we have �8 ' 0.746

which is much closer to the value �8 ' 0.730 given by weak lensing survey CFHTLenS [12].

VI. CONCLUSION

In this paper, we have proposed a particle physics model in which vector dark matter

(VDM) and dark radiation (DR) have a common origin, namely a Yang-Mills dark sector. We

have explicitly shown an illustrating case where dark SU(3) gauge group is spontaneously

broken to its SU(2) subgroup. The residual massless gauge bosons constitute DR while

10



Summary
• We discussed some cosmological effects with 

interacting Dark Matter and Dark Radiation within 
DM models with dark gauge symmetries 

• This scenario is motivated theoretically and also 
from observational tensions, H0 and σ8 

• We present two particle physics models: 
• A massless dark photon with unbroken U(1) 

gauge symmetry 
• Residual non-Abelian Dark Matter and Dark 

Radiation 
• It is possible to resolve tensions simultaneously
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Thanks for your attention.
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