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1. Introduction

➢ The gauge principle is one of the successful principles in modern particle physics so far
➢ The SM gauge symmetry, GSM = SU(3)C × SU(2)L × U(1)Y, regulates not only 

interactions but also particle content by means of anomaly cancellation

Success of the SM and the gauge principle

Right-handed neutrinos as a missing piece to the SM
➢ Neutrino oscillations imply non-zero masses of neutrinos
➢ Massive neutrinos may indicate the existence of chiral partners: 

right-handed neutrinos (RHNs)
➢ If there are three RHNs, they can address other important issues, 

e.g., DM and BAU

B-L gauge symmetry
➢ To organize three RHNs under a gauge theory, the GSM × U(1)B-L gauge symmetry is 

one of the simplest extensions of the SM, under which we have the following new fields:

- three right-handed neutrinos (N1, N2, N3; B-L charge -1)
- A singlet Higgs field (ΦS; B-L charge -2)
- B-L gauge boson (Z’ )

The B-L gauge interaction can provide viable dark matter production mechanisms; 
freeze-in and freeze-out
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2. Dark matter under the B-L gauge force

Our setup
➢ Lagrangian is given by

L = LSM + iNi /DNi �
⇣

y↵i L↵Ni �̃H +
i

2
�SNC

i Ni + h.c.
⌘

+ |Dµ�S |2 � V (�H ,�S) � 1
4

Z 0
µ⌫Z 0µ⌫

V (�H ,�S) =
�H

2
(|�H |2 � v2

H )2 +
�S

2
(|�S|2 � v2

S)2 + �HS(|�H |2 � v2
H )(|�S|2 � v2

S)

➢ We take MN1 < MN2, MN3, so that N1 can be a (decaying) dark matter when the Yukawa 
coupling (yα1) is sufficiently small

➢ As ΦS develops the vacuum expectation value, <ΦS>=vS, Ni and Z’  acquire the mass:

MNi = i vS, M2
Z 0 = 8g2

B�Lv2
S

SM sector N1 sector
Z’

ΦS
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➢ To concentrate on the Z’ effect, we turn off the Higgs portal coupling λHS (→0)

➢ Lagrangian is given by
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Relevant reactions for thermalization of N1

➢ Reaction rates:

N1Z’fSM

SM sector N1 sectorZ’

fSM Z’ N1

Z’

Z’

fSM

fSM

N1

N1

Z’

on-shell or off-shell

➢ In most of parameter spaces, 
r(N1↔fSM) almost determines 
whether N1 is thermalized or not

➢ r(N1↔fSM)/H ~ 1 at the thermalization and the freeze-out temperature

r/H

1/T

thermalize decouple

1
➢ Dark matter scenario 

drastically changes, 
depending on whether 
N1 is thermalized or not.

➢ There are mainly three processes that 
can bring N1 into the thermal bath

r(N1↔fSM), r(N1↔Z’), r(Z’↔fSM)

r/H

1/T

1

for smaller coupling, N1 never 
reaches thermal equilibrium
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N1 production and relevant experimental constraints
➢ For thermal N1, usual freeze-out mechanism can work
➢ For non-thermal N1, freeze-in mechanism can work [L.Hall, et al. ‘09]
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N1 production and relevant experimental constraints
➢ For thermal N1, usual freeze-out mechanism can work
➢ For non-thermal N1, freeze-in mechanism can work

➢ In the non-thermal N1 regions, 
N1 is produced through

➢ For 2MN1 < MZ’, the relic 
abundance of N1 is roughly 
given by

fSM fSM → N1 N1

[L.Hall, et al. ‘09]

�Z 0 ⇠ Cf
g2

B�L

12⇡
MZ 0 (τ=2MN1/MZ’)

⌦nt
N1

h2 ' 0.12 ⇥


100
g⇤

�3/2  gB�L

5.1 ⇥ 10�12

� 
7
Cf

� 
f (⌧ )
0.19

�

f (⌧ ) = ⌧ (1 � ⌧2)3/2

➢ In the thermal N1 regions, N1 
is produced as a relativistic 
particle, so its abundance is 
overproduced:

⌦th
N1

h2 ' 100⇥


MN1

10 keV

� "
10.75

g⇤(T dec
N1

)

#



2. Dark matter under the B-L gauge force

N1 production and relevant experimental constraints
➢ Another interesting case is 2MN1 > MZ’, where Z’ can not decay into a pair of N1
➢ The reaction rate r(N1↔fSM) becomes always off-resonant (smaller than on-res. case)

⌦th
N1

h2 =
s0MN1Y th

N1

⇢ch�2 / 1
�v

����
T⇠T dec

N1

➢ For non-thermal N1, N1 is produced 
by freeze-in mechanism

5

universe is reheated up to the temperature TR after the
inflation, namely nN1(TR) ' nN1(1) = 0, and thus the
Boltzmann equation for nN1 is given by

dnN1

dt
+ 3HnN1

=
T

64⇡4

Z 1

4M2
N1

ds �v(s� 4M2
N1

)1/2s�1K1(
p
s/T ),(10)

where s is the center of mass energy. For the annihi-
lation cross section �v, the process (a) is the dominant
contribution, which is given by

�v ' 2

3
g4B�LQ

2
f

s+ 2M2
N1

MZ0�Z0
�(s�M2

Z0), (11)

where we have utilized the narrow width approximation.
9 Substituting Eq. (11) to the right hand side of Eq.
(10), we obtain

dYN1

dT
=�

45
p
5g5B�L

64
p
2⇡5

MPlM
4
Z0

g
3/2
⇤ �Z0T 5

K1(MZ0/T )

⇥

2 +

4M2
N1

M2
Z0

� 
1�

4M2
N1

M2
Z0

�1/2
, (12)

where we have used YN1 ⌘ nN1/s and d/dt =
�HT d/dT , and take g⇤ as a constant in the following.
By replacing T by x ⌘ MN1/T and integrating x from
0 to 1 in Eq. (12), we end up with the non-thermal
abundance

⌦nt
N1

h2 =
s0MN1Y

nt
N1

⇢ch�2
,

' 0.12⇥
✓
100

g⇤

◆3/2 ✓
gB�L

6.3⇥ 10�12

◆2 ✓43/6

Cf

◆
f(⌧),

(13)

where f(⌧) = ⌧(2 + ⌧2)
p
1� ⌧2 with ⌧ = 2MN1/MZ0

taking 0 < ⌧ < 1, and f(⌧) takes the maximal value
f(⌧) ' 1.27 at ⌧ ' 0.77. We also approximate the
total decay width as �Z0 ⇠ Cfg

2
B�L/(12⇡)MZ0 with

Cf ⌘
P

f Q
2
f + 1/2 (the factor 1/2 counts the N1 con-

tribution, see appendix A). If Z 0 decays into all the
SM fermions (and N1), Cf becomes 43/6. Therefore,
the gauge coupling should be fairly small to obtain the
observed dark matter abundance in this case, and it is
challenging to test such a feebly interacting Z 0 experi-
mentally.

E. MZ0 < 2MN1

Next, let us further focus on a possible dark mat-
ter scenario for MZ0 < 2MN1 , where the BBN bound

9 We here consider the case that TR is su�ciently large compared
to all the mass scale appearing in the U⌫MSM. As other possi-
bility, the scenario with TR < MZ0 was discussed in Ref. [49]

gets relaxed significantly because the reaction (a) is sup-
pressed. This can be seen in the region MZ0 . 20 keV in
Fig. 1, where the BBN bound on the gauge coupling be-
comes weak since N1 is hardly thermalized. In our setup,
there are two scenarios for the dark matter according to
whether the relic abundance is produced by thermal or
non-thermal way. In the region above dot-dashed curves
in Fig. 2, N1 comes into the thermal bath at some time.
In this parameter region, N1 is always non-relativistic at
the decoupling temperature T dec

N1
, and thus, we can eval-

uate the dark matter abundance in the same way as the
usual cold dark matter case, which is given by

⌦th
N1

h2 =
s0MN1Y

th
N1

⇢ch�2
, (14)

1/Y th
N1

=


45

8⇡2M2
Pl

��1/2 Z Tdec
N1

0
g
1/2
⇤ h�vidT, (15)

where the thermally averaged annihilation cross section,
h�vi, includes the processes (a) and (c). The result
is shown by the blue lines in Fig. 2 where we have
given two benchmark cases, MN1 = MZ0 (left panel) and
MN1 = 100MZ0 (right panel). In both cases, however, the
thermal dark matter scenario is ruled out by the Borexino
experiment.
As a viable dark matter scenario, let us consider the

non-thermal case where N1 is produced by freeze-in
mechanism as discussed before. By demanding the con-
dition nN1(TR) ' nN1(1) = 0, we obtain the abundance
given by

⌦nt
N1

h2 =
s0MN1Y

nt
N1

⇢ch�2
, (16)

1/Y nt
N1

=


45

8⇡2M2
Pl

��1/2 Z 1

0
g
1/2
⇤ h�vidT. (17)

As an important feature of this case is that the abun-
dance is almost independent from the mass of N1. To see
this, let us approximately derive the analytical expres-
sion of the relic abundance. Since we here consider the
o↵-resonance reactions and only the reaction (a) is su�-
cient in most of the cases, we can take �v ⇠ g4B�L/(3⇡s).
Substituting �v to the right hand side of Eq. (10), we
obtain

dYN1

dT
= � 45

p
10

32⇡8g
3/2
⇤

g4B�LMPlM
2
N1

T 4
K2

1 (MN1/T ). (18)

It should be noted that the right hand side of Eq. (18)
takes the maximum value at around T ⇠ MN1 , and thus,
the produced number density is not sensitive to higher
temperatures. Due to this fact, it turns out to be YN1 /
1/MN1 after integrating over the temperature, and hence
the abundance is independent from MN1 . By replacing
T by x ⌘ MN1/T and integrating x from 0 to 1 in Eq.
(18), we end up with the non-thermal abundance

⌦nt
N1

h2 ' 0.12⇥
✓
100

g⇤

◆3/2 ✓
gB�L

4.5⇥ 10�6

◆4

. (19)

➢ For thermal N1, N1 is ordinary cold 
dark matter produced by freeze-out 
mechanism

(Since YN1 is proportional to 1/MN1, its 
abundance is almost mass independent)

freeze-out

freeze-in
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test this region



3. Implications

The Search for Hidden Particles (SHiP) experiment
➢ SHiP: A new proton beam dump experiment at CERN
➢ The SHiP utilizes 400 GeV proton beam from the SPS with ~1020 protons on target

e+

e-

Z’p

E0 = 400 GeV

target (tungsten)

muon shield (60m) detector (50m)

Nsig ~ NPOT×Rprod×Pdet➢ The number of signal events:

- Z’ production: proton bremsstrahlung
Z’

p

N N
p

- Pdet: probability that Z’ decays inside the detector

If the lifetime of Z’ is too short or too long, Z’ can not be observed
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The Search for Hidden Particles (SHiP) experiment
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As an important feature of this case is that the abun-
dance is almost independent from the mass of N1. To see
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It should be noted that the right hand side of Eq. (18)
takes the maximum value at around T ⇠ MN1 , and thus,
the produced number density is not sensitive to higher
temperatures. Due to this fact, it turns out to be YN1 /
1/MN1 after integrating over the temperature, and hence
the abundance is independent from MN1 . By replacing
T by x ⌘ MN1/T and integrating x from 0 to 1 in Eq.
(18), we end up with the non-thermal abundance

⌦nt
N1
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gB�L

4.5⇥ 10�6
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➢ Freeze-in N1

g⇤ ⇠ g⇤(MN1 )

for larger gB-L, Z’ lifetime becomes shorter

SHiP parameters:
Ebeam = 400GeV, NPOT = 1020

shield length: 50m
detector length: 60m
Nsig > 3 (assuming no-background)

for smaller gB-L, Z’ lifetime becomes longer

➢ SHiP will be able to cover:

[Gorbunov, et al., ‘15]

1 MeV < MZ’ < 200 MeV (in blue band)
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➢ 2MN1 > MZ’

SHiP can be a powerful tool for searching the freeze-in scenario
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B-L breaking scale

➢ Dark matter abundance is determined by gB-L and MZ’, which implies vS through

M2
Z 0 = 8g2

B�Lv2
S

➢ In the freeze-in region for off-resonance case (2MN1>MZ’), we obtain
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FIG. 2. Dark matter abundance and various constraints on the gauge coupling and the mass of the Z0. The color code of
the constraints are the same as Fig. 1. N1 becomes thermal in the region above the dot-dashed lines, and non-thermal in the
region below the same lines.

This estimate well coincide with our numerical calcula-
tion shown as red hatched curves in Fig. 2, where the
small fluctuations are caused by the temperature depen-
dence of g⇤ whose value is roughly given by g⇤(T ⇠
max[MZ0 ,MN1 ]).

We briefly comment on the BBN bound in Fig. 2,
which is depicted by light gray regions. Since the BBN
bound is sensitive only for relativistic spices at around the
neutrino decoupling temperature, it can eliminate up to
MN1 ,MZ0 . T dec

⌫ . Below gB�L ⇠ 10�5, thermalization
temperature of N1 and Z 0 is below T dec

⌫ or they never
come into thermal bath, and thus the BBN can not con-
strain this region.

IV. IMPLICATIONS

In the non-thermal scenario for 2MN1 > MZ0 , the dark
matter abundance given by Eq. (19) implies the B � L
breaking scale. Since the Z 0 mass is given by Eq. (5),
substituting Eq. (19) we end up with the B�L breaking
scale vS :

v2S ' (7.9⇥ 104MZ0)2
✓

0.12

⌦nt
N1

h2

◆1/2 ✓100

g⇤

◆3/4

. (20)

It turns out that, e.g., for the mass regions 500 keV .
MZ0 . 1 MeV and MZ0 & 0.1 GeV, the scalar mass is
at most 200 GeV . Ms . 400 GeV and Ms & 4 TeV,
respectively, with taking �S = 4⇡. It is interesting that
Ms ' 750 GeV can be achieved for MZ0 > 0.1 GeV by

taking appropriate value of �S , and hence s can be a good
candidate for recently reported the 750 GeV diphoton
excess at the LHC Run 2 [50]. Although scrutinizing
the e↵ect of s is beyond the scope of this paper, our
analysis can be justified when we take �HS vanishingly
small so that s does not come into the thermal bath and
the non-thermal production of N1 through the decay of
s is su�ciently small [15].

Next, let us discuss possible experiments to search the
freeze-in region (on the red curves) in Fig. 2. Beam
dump experiments are powerful tool to look for the small
coupling regions, and the SHiP experiment can explore
a larger region. We estimate the expected reach of the
SHiP by using proton bremsstrahlung. The SHiP ex-
periment utilizes the CERN SPS 400 GeV proton beam,
where the Z 0 is produced via bremsstrahlung in proton
scattering o↵ target. The SHiP is designed to have 60
m muon shield and 50 m detector region by which the
Z 0 decaying inside the detector is observed. To estimate
the signal events, we take the same kinematic parame-
ters shown in Ref. [37]. By demanding there is no back-
ground, in Figs. 1-3 we show the expected region with
the signal events more than three, which is depicted by
the black solid curves. The figure 3 focuses on the region
around the BD constraints. The blue region in the fig-
ure shows the case that N1 satisfying 2MN1 > MZ0 can
explain the whole amount of the observed dark matter
abundance. The bottom side boundary of this region is
determined by taking 2MN1 ' MZ0 , while the top side
boundary is obtained by takingMN1 � MZ0 . As a result,
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(taking λS = 4π)



Summary

Summary

➤We discussed various right-handed neutrino dark 
matter scenarios in the U(1)B-L gauge extension of the 
vMSM.

➤The B-L gauge interaction can open new windows for 
right-handed neutrino dark matter.

➤ Forthcoming fixed target experiment can test the 
freeze-in scenario.


