SEMI-ANNIHILATION AND DARK MATTER INDIRECT DETECTION

A SYSTEMATIC ANALYSIS

Yi Cai

Nov 28, 2016

CosPA 2016 with Andrew Spray, 1611.xxxxx

Introduction

Where are we heading?

- O Strong limits, null signals
 - Direct detection: embracing the neutrino background
 - Indirect detection
 - Collider test
- Take a break and check the assumptions?
 - \mathbb{Z}_2 well motivated, yet not generic

DM Mass (GeV/c2)

Semi-Annihilation

With Z_2

- Direct detection
- Indirect detection
- Collider test

Beyond Z_2

- Semi-annihilation(D'Eramo & Thaler, 2010)
- Odd number of external dark sector particles
- \bigcirc No σ_{DD} or $\sigma_{collider}$
- Modify relic density and ID

A summary of potential differences brought by SA

- (un)fortunately exempt from direct searches
- affect indirect searches
 - asymmetric kinematics for $\chi\chi \to \psi V$

$$E_V = \frac{4m_{\chi}^2 + m_V^2 - m_{\psi}^2}{4m_{\chi}}$$

• dark partner decays

SA study so far more model-dependent:
 Belanger et al, 1202.2962; D'Eramo et al, 2120.7817; Ko & Tang,
 1402.6449; Aoki & Toma, 1405.5870; Cai & Spray 1509.08481; · · ·

Model-independent Method: EFT

 \bigcirc integrate out heavy mediators \rightarrow EFT operators

$$\mathcal{L} \sim \frac{1}{\Lambda^d} \chi^3 \mathcal{O}_{SM}$$

- \bigcirc once dimension d and \lozenge_{SM} fixed, easy to exhaust the theory space with the guidance of symmetries
- EFT especially convenient for semi-annihilation
 - mediator(if any) charged under dark symmetry and necessarily heavier than dark matter
 - o only relic density and ID relevant, both non-relativistic
 - valid EFT description

Aims

Construct SA operators under assumptions

- \bigcirc DM is a stable gauge singlet, complex scalar or fermion, charged under exact global symmetry beyond Z_2
- \bigcirc consider $2 \rightarrow 2$ process with 3 dark sector particles
- \bigcirc up to dimension 6 and some leading at dimension 7

DERIVE CONSTRAINTS ON OPERATORS

- \bigcirc limit on UV scale Λ (expect d=4)
- assume relic density saturated
- other constraints if relevant

OPERATORS

Dark Matter Only

- O dark matter is a singlet of the SM gauge group
- \bigcirc \mathbb{O}_{SM} : $H^{\dagger}H$ and $L^{\dagger}\tilde{H}$ with possible variation of derivatives

Sca. DM Op.	Definition		
0_{5U}^{H}	$s^{ijk}\phi_i\phi_j\phi_k H^{\dagger}H$		
6 ^Z _{7U}	$(x^{ikj} + y^{ijk}) \phi_i \phi_j (\partial^{\mu} \phi_k) (iH^{\dagger} \overrightarrow{D_{\mu}} H)$		
6 ^H _{7U}	$(x^{ikj} + y^{ijk}) (\partial_{\mu}\phi_i)(\partial^{\mu}\phi_j)\phi_k H^{\dagger}H$		
Fer. DM Op.	Definition		
6^{LL}_{7U}	$\left(s^{ijk} + y^{ijk} + x^{ikj}\right) \left(\eta_i \eta_j\right) \left(\left(L^{\dagger} \tilde{H}\right) \bar{\xi}_k^{\dagger}\right)$		
G ^{LR} _{7U}	$\left(y^{ijk} + x^{ikj}\right) (\bar{\xi}_i^{\dagger} \bar{\xi}_j^{\dagger}) \left((L^{\dagger} \tilde{H}) \bar{\xi}_k^{\dagger}\right)$		
Mixed DM Op	perator	Definition	
$O_{6U}^{LH^{\dagger}}$		$s^{ij} \phi_i \phi_j \left((L^{\dagger} \tilde{H}) \bar{\xi}^{\dagger} \right)$	
\mathbb{G}^{L}_{7U}		$a^{ij}\phi_i(\partial_\mu\phi_j)\left((L^\dagger\tilde{H})\bar{\sigma}^\mu\eta\right)$	
0 ^{HS}		$s^{ij} \bar{\chi}_i^c \chi_j \phi H^{\dagger} H$	
O _{6U}		$s^{ij} \bar{\chi}_i^c \gamma^5 \chi_j \phi H^{\dagger} H$	
ŏ _{6U}		$a^{ij} \bar{\chi}^c_i \sigma^{\mu\nu} \chi_j \phi \check{B}_{\mu\nu}$	
6 ^{ZV} _{7U}		$a^{ij} \bar{\chi}_i^c \gamma^\mu \chi_j \phi \left(i H^{\dagger} \overleftrightarrow{D_\mu} H \right)$	
O _{7U}		$s^{ij} \bar{\chi}_i^c \gamma^{\mu} \gamma^5 \chi_j \phi \left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)$	
6^{HV}_{7U}		$a^{ij} \bar{\chi}_i^c \gamma^{\mu} \chi_j \left(\phi \overleftrightarrow{\partial_{\mu}} (H^{\dagger} H) \right)$	
6_{7U}^{HA}		$s^{ij} \bar{\chi}_i^c \gamma^\mu \gamma^5 \chi_j \left(\phi \overleftrightarrow{\partial_\mu} (H^\dagger H) \right)$	

- \bigcirc scalar DM ϕ_i fermion DM $\chi_i = (\eta_i, \xi_i^{\dagger})^T$
- only two ops. for unique DM
- \bigcirc contain only neutral SM particles: h, Z, γ, ν
- \bigcirc mostly lead to $2 \rightarrow 3$ SA processes
- (relatively) simple model space

Higgs portal

besides SA ops, Higgs portal ops allowed

$$\mathfrak{G}_{\phi H} = \lambda_{\phi H} \phi^{\dagger} \phi H^{\dagger} H \qquad \mathfrak{G}_{\chi H} = \frac{c_{\chi H}}{\Lambda^5} \bar{\chi} \gamma^5 \chi H^{\dagger} H$$

- sometimes even desirable if extra operators need to annihilate dark matter away
- \bigcirc For SA to dominate, constraints on $\lambda_{\phi H}$ and $c_{\chi H}$
 - SA generated at tree-level, Higgs portal at one-loop level
 - UV scale $\Lambda \lesssim 5 10 \text{ TeV}$

Models with Dark Partner

- dark partners: relatively light unstable states
 - allow SA to charged/colored particles
 - allow lower-dimensional operators
- dark partners decay without breaking DM symmetry
- o search dark partners at colliders
 - mass $\gtrsim 1-2$ TeV for colored or 200-500 GeV for charged particles
 - indirectly set a bound on DM mass, $m_{\rm DM} > \frac{1}{2} m_{\rm DP}$

Decay of Dark Partners

- odark partner can not decay via the same operator
 - $\psi \to \phi \phi + SM$ kinematically forbidden
 - new coupling needed $\psi \to \phi^{\dagger} + SM$
- model dependent decay of dark parnters
 - should be allowed by all symmetries
 - fermion DM can not have two body decays

Obounds on lifetime of dark partner from BBN $\tau \lesssim 0.05 \; s \Rightarrow c_{dec} \gtrsim 10^{-11} (4\pi)^{n-2} \left(\frac{\Lambda}{m_{\rm DP}}\right)^{D_{\rm dec}-4}$

New Pheno from Dark Partner Decay

- obviously dark partner decay contributes to cosmic ray signal
 - o depends on the mass of dark partner
 - the details of the decay, quite model dependent
- other complications (see e.g. 1509.08481)
 - dark matter annihilation through t-channel dark partner
 - dark matter coannihilates with dark partner
 - could enhance contributions to direct detection
 - possible dark matter and dark partner mixing
- general bounds $c_{\text{dec}} \lesssim 0.1 0.01$

annihilation through t-channel

contribution to direct detection

A Review of the Ops.

- possibilities vastly increased
- on the right:scalar DM ops.
- \bigcirc one d=4 op.
- \bigcirc a handful of d = 5 ops.
- \bigcirc can couple to all SM particles γ/g require multi-component DM

Operator	Definition	ω/ψ
\mathbb{G}_{4U}^{H}	$s^{ij} \phi_i \phi_j (H^{\dagger} \omega)$	$(1, 2, \frac{1}{2})$
$O_{5U_{-}}^{ H _{1}^{2}}$	$s^{ij} \phi_i \phi_j \omega H^{\dagger} H$	(1, 1, 0)
$O_{r,r}^{ H _3^2}$	$s^{ij} \phi_i \phi_j \omega^a H^{\dagger} \sigma^a H$	(1, 3, 0)
O ₅₁₁	$s^{ij} \phi_i \phi_j \omega^a H^{\dagger} \sigma^a \tilde{H}$	(1, 3, 1)
O _{GU}	$s^{ij} \phi_i \phi_j (H^{\dagger} \omega) (H^{\dagger} H)$	$(1, 2, \frac{1}{2})$
Octi	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} \tilde{H}_K^{\dagger}$	$(1, 4, \frac{1}{2})$
O _H ,	$s^{ij} \phi_i \phi_j \omega^{IJK} H_I^{\dagger} H_J^{\dagger} H_K^{\dagger}$	$(1, 4, \frac{3}{2})$
$\mathbb{G}_{6U}^{H\partial^2}$	$s^{ij} (\partial_{\mu} \phi_i)(\partial^{\mu} \phi_j)(H^{\dagger} \omega)$	$(1, 2, \frac{1}{2})$
$O_{6U}^{H\partial D}$	$a^{ij} \phi_i(\partial_\mu \phi_j) \left(H^\dagger \overrightarrow{D_\mu} \omega \right)$	$(1, 2, \frac{1}{2})$
$O_{6U}^{HD^2}$	$s^{ij} \phi_i \phi_j (D^{\mu} H)^{\dagger} (D_{\mu} \omega)$	$(1, 2, \frac{1}{2})$
$\mathbb{G}_{5U}^{\bar{f}\psi}$	$s^{ij} \phi_i \phi_j \bar{f} \zeta$	$(\bar{R}_{\bar{f}}, 1, -Y_{\bar{f}})$
$O_{5U}^{F\psi}$	$s^{ij} \phi_i \phi_j F^{\dagger} \bar{v}^{\dagger}$	$(R_F, 2, Y_F)$
$O_{-11}^{fH\psi}$	$s^{ij} \phi_i \phi_j \bar{f}(\tilde{H}^{\dagger} \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} - \frac{1}{2})$
$G_{6U}^{\bar{f}H^{\dagger}\psi}$	$s^{ij} \phi_i \phi_j \bar{f}(H^{\dagger} \zeta)$	$(\bar{R}_{\bar{f}}, 2, -Y_{\bar{f}} + \frac{1}{2})$
Octr	$s^{ij} \phi_i \phi_j (F^{\dagger} H) \bar{v}^{\dagger}$	$(R_F, 1, Y_F - \frac{1}{2})$
$O_{6U}^{FH^{\dagger}\psi_{1}}$	$s^{ij} \phi_i \phi_j (F^{\dagger} \tilde{H}) \bar{v}^{\dagger}$	$(R_F, 1, Y_F + \frac{1}{2})$
$O_{6U}^{FH\psi_3}$ $O_{FH^{\dagger}\psi_3}^{FH^{\dagger}\psi_3}$	$s^{ij} \phi_i \phi_j (F^{\dagger} \sigma^a H) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F - \frac{1}{2})$
$O_{6U_{-}}^{FH^{\dagger}\psi_{3}}$	$s^{ij} \phi_i \phi_j (F^{\dagger} \sigma^a \tilde{H}) \bar{v}^{a\dagger}$	$(R_F, 3, Y_F + \frac{1}{2})$
660 601 660 67	$a^{ij}\phi_i(\partial_\mu\phi_j)\bar{f}\sigma^\mu\bar{v}^\dagger$	$(\bar{R}_{\bar{f}}, 1, -Y_{\bar{f}})$
66U	$a^{ij}\phi_i(\partial_\mu\phi_j)F^{\dagger}\bar{\zeta}^\mu\eta$	$(R_F, 2, Y_F)$

Constraints

Overviews

limits from cosmic ray and other astrophysical observations

gamma ray, positron, neutrinos cosmic microwave background

- assumptions:
 - DM is single component
 - one operator at a time
 - fix the mass ratio of dark partner and dark matter
- o set limits on the EW broken phase operators
 - direct connection to amplitudes
 - easier to translate to constraints for general models

Unique Scalar Limit

two operators

$$\frac{1}{6}c_{4B}^h\phi^3h \qquad \frac{1}{2}c_{4B}^{h\omega}\phi^2\omega h$$

- Ogamma ray spectra vary with ρ with the strongest at $\rho = 1.5$
- constraints and projection
 - solid for Fermi-LAT limit
 - dashed for CTA projection
- relic density shown in dotted lines

Unique Fermion Limit

 \bigcirc d = 6 ops.

$$rac{1}{6\Lambda^2}\chi^3
u \qquad rac{1}{2\Lambda^2}(\chi\chi)(ar
u\psi)$$

- $\bigcirc \rho$ determines the size of contribution from SA and the decay of DP
- $\rho = 1.5$ sets the former to be absolutely dominant
- regions below excluded
- o perturbativity shown in red dotted line
- below the relic curve the universe is not overclosed

 m_v [GeV]

Leptonic Dark Partner

- 0 d = 5 and 6 ops top: $\frac{1}{2\Lambda}\phi^2 \bar{f}\psi$ bottom: $\frac{1}{2\Lambda^2}(\chi\chi)\bar{f}\psi$
- positron propagated with DRAGON
- AMS limits: dashed lines
- CMB limits: solid lines

Hadronic Dark Partner: quarks and τ

- $\bigcirc d = 5 \text{ and } 6 \text{ ops}$ $\frac{1}{2\Lambda}\phi^2 \bar{f}\psi \text{ and } \frac{1}{2\Lambda^2}(\chi\chi)\bar{f}\psi$
- O Fermi-LAT limits: solid lines
- O CTA projection: dashed lines
- four spieces shown

Conclusion

Conclusion

- O Semi-Annihilation is a generic feature of dark matter
- Constructed all SA operators up to dimension 6
- Model space for DM-only theories is small
- Dark partners lead to more varied phenomenology at cost of dependence on dark partner decay modes
- Derived limits and prospects from cosmic ray searches;
 close to relic cross section in some fermionic channels
- O Many questions remain, e.g. UV completions