Highlights of the ANTARES Neutrino Telescope

Annarita Margiotta
Università di Bologna and INFN - Bologna
on behalf of the ANTARES collaboration
(annarita.margiotta@unibo.it)

CosPA 2016, 28 Nov 2016 - Sydney
ANTARES: the largest Northern neutrino telescope

Scientific goals

- Neutrino astrophysics – (1)
- Multi-messenger studies – (2)
- Dark matter searches – (3)
- Atmospheric neutrinos
- Exotic particles search: nuclearites, monopoles
- Acoustic neutrino detection
- Earth and Sea sciences
How does a telescope work?

Neutrino detection principle

3D PMT array

Cherenkov light from μ

γ_c

2500 m depth

43°

Interaction

μ

ν

μ (~ ν) trajectory

\(\langle \theta_{\mu-\nu} \rangle = \frac{1.5^\circ}{\sqrt{E_\nu \,[\text{TeV}]} } \)
Event topology

- Muon neutrino, CC only (track reconstruction)
- Neutrino or charged lepton
- Atmospheric muon
- All neutrino flavours, CC & NC (shower reconstruction)
The ANTARES site

- **The ANTARES site**
- **Institut M. Pacha** control room
- **Electro-optical Cable of 40 km**
- **La Seyne-sur-Mer**
- **Toulon**
- **depth ~ 2500 m**
- **Site ANTARES**
 - 42° 50' N, 6° 10' E
 - 2500 m under s.l.
The ANTARES telescope

- 12 lines of 75 PMTs
- 1 line for Earth and Marine sciences
- 25 storeys / line
- 3 PMTs / storey
- 885 PMTs

ALL-DATA-TO-SHORE:
computer farm @ the shore station: data filtering, processing and storage.

Submarine links
Junction Box
40 km to shore

~70 m
14.5 m
350 m

4-08-2010
ANTARES performance

ANTARES angular resolution vs E_{\parallel}

Tracks (μCC) ideal tool for astronomy
Angular resolution $< 0.4^\circ$ above 10 TeV
90% purity

FAVOURABLE OPTICAL PROPERTIES

Upgoing cascade events (eCC, NC)
Angular resolution $< 3^\circ$
Shower confined within ≈ 10 m \rightarrow contained events

Good estimate of the energy, better than 10%
1 - Neutrino astrophysics

Search for fluxes of high energy cosmic neutrinos

- Diffuse flux (not identifiable single source)
- Individual sources (point-like and extended sources)

Galactic sources: near objects
lower luminosity requirements
 - Micro-quasars
 - Supernova remnants
 - Magnetars
 - Galactic Centre and Galactic ridge

Extra-galactic sources: most powerful accelerators in the Universe
 - AGNs
 - GRBs
1 - Neutrino astrophysics

Search for fluxes of high energy cosmic neutrinos

- **Diffuse flux (not identifiable single source)**
- **Individual sources (point-like and extended sources)**

Galactic sources: near objects
lower luminosity requirements
- Micro-quasars
- Supernova remnants
- Magnetars
- Galactic Centre and Galactic ridge

Extra-galactic sources: most powerful accelerators in the Universe
- AGNs
- GRBs
Diffuse flux search

- Search for excess of reconstructed HE events over the expected atmospheric background
Diffuse flux

TRACKS
- Data: 2007-2015 (2451 livedays)
- **Above E_{cut}:** Bkg: 13.5 ± 3 evts
- IC-like signal: 3 evts
- **Observed:** 19 evts

SHOWERS
- Data: 2007-2013 (1405 livedays)
- **Above E_{cut}:** Bkg: 5 ± 2 evts
- IC-like signal: 1.5 evts
- **Observed:** 7 evts
Highlights of ANTARES

A. Margiotta

Above E_{cut}: Bkg: 13.5 ± 3 evts

IC-like signal: 3 evts

TRACKS

Data: 2007-2015 (2451 livedays)

Above E_{cut}: Bkg: 13.5 ± 3 evts

IC-like signal: 3 evts

COSPA 2016 - Sydney

PRELIMINARY

ANTARES combined upper limits and sensitivities

(2007-2015) tracks + showers
Point sources

- 92 candidate sources
 + 13 HESE
- 2007-2015 data:
 2424 days
 7269 tracks
 180 cascades
- Unbinned all-sky search
“Enhanced” diffuse flux

ICECUBE PRELIMINARY

\(TS = 2 \log(L/L_0) \)

COSPA 2016 - Sydney
Highlights of ANTARES - A. Margiotta

14
The Galactic ridge

• ν’s and γ-rays produced by CR propagation
 \(p_{CR} + p_{ISM} \rightarrow \pi^0\pi^\pm \ldots \)
 \(\pi^0 \rightarrow \gamma\gamma (EM \text{ cascade}) \)
 \(\pi^\pm \rightarrow \nu_\mu, \nu_e \ldots \)
• Search for \(\nu_\mu \), data 2007-2013
• Search region \(|l|<30^\circ, |b|<4^\circ\)
• Cuts optimized for \(\Gamma=2.4-2.5 \)
• Counts in the signal/off zones
• No excess in the HE neutrinos
• 90% c.l. upper limits: \(3<E_\nu<300 \text{ TeV} \)

PLB 760(2016)143
Simple extrapolation of the *Fermi*-LAT γ-ray measurement to the IC ν flux in the Galactic Plane area excluded

≥ 3 HESE originating in this region excluded at 90% c.l. for $\Gamma = 2.4$-2.5

Improvements expected considering showers and extending the data sample
Multimessenger program

Intense effort in working with other collaborations

- better understanding of the sources and of the physics mechanisms
- increase detector sensitivity (uncorrelated backgrounds)

Multi wavelength follow-up of neutrinos

<table>
<thead>
<tr>
<th>Radio</th>
<th>Visible</th>
<th>X-ray</th>
<th>GeV-ray</th>
<th>TeV-ray</th>
<th>GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWA</td>
<td>TAROT</td>
<td>Swift</td>
<td>Fermi-LAT</td>
<td>HESS</td>
<td>Ligo</td>
</tr>
<tr>
<td></td>
<td>ZADKO</td>
<td></td>
<td></td>
<td>HAWC</td>
<td>IC</td>
</tr>
<tr>
<td>MASTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alerts:
- Radio: 12/yr
- Visible: 30/yr
- X-ray: 6/yr
- GeV-ray: (Offline)
- TeV-ray: (1-10/yr)
- GW: (Offline)
Real-time (follow-up of the selected neutrino events):
• optical telescopes [TAROT, ROTSE, ZADKO, MASTER]
• X-ray telescope [Swift/XRT]
• GeV-TeV γ-ray telescopes [HESS, HAWC]
• radio telescope [MWA]
• Online search of fast transient sources [GCN, Parkes]

Multi-messenger correlation with:
• Gravitational wave [Virgo/Ligo]
• UHE events [Auger]

Time-dependent searches:
• GRB [Swift, Fermi, IPN]
• Micro-quasar and X-ray binaries [Fermi/LAT, Swift, RXTE]
• Gamma-ray binaries [Fermi/LAT, IACT]
• Blazars [Fermi/LAT, IACT, TANAMI...]
• Crab [Fermi/LAT]
• Supernovae Ib,c [Optical telescopes]
• Fast radio burst [radio telescopes]
Real-time follow-up (TAToO)

- M. Ageron et al., The ANTARES telescope neutrino alert system, APP 35 (2012) 530 (method)
- Adrián-Martínez et al., **Optical** and X-ray early follow-up of ANTARES neutrino alerts, JCAP02(2016)062

ANTARES trigger
- single HE ν (~10 TeV)
- single ν correlated to local galaxies for SNe (~1 TeV)
- doublet of ν’s

Performances:
- Time to send an alert: ~ 5 s
- Median angular resolution: 0.3° - 0.4°
- First image of the follow-up: <20 s
- Dedicated optical image analysis
Neutrino follow-up of GW150914

- No ANTARES events in ±500 s from the GW time (0.015 expected)
- Limits from ANTARES dominates for $E \nu < 100$ TeV
- U.L. from IC dominated above 100 TeV
- Size of GW150914: 590 deg2 ANTARES resolution: <0.5 deg2
- Limits on total energy radiated in neutrinos: <10% GW
- Future: Receive / send alerts in real time
Neutrino follow-up of GWs

3 alerts sent by LIGO during the run 01 (2015/09 → 2016/01):

- GW150914: merging of 2 BHs (M= 36/29 M_\odot - 410 Mpc - 5.1 σ)

- LVT151012: merging of 2 BHs (M= 23/13 M_\odot - 1000 Mpc - 1.7 σ)

- GW151226: merging of 2 BHs (M= 14/7 M_\odot - 440 Mpc - >5 σ)
associated with GeV and TeV γ-ray flaring blazars and X-ray binaries

- Search for γ's (2008-2012) correlated with high activity state
- **Blazars** monitored by FERMI-LAT and IACTs (**JCAP 1512 (2015), 014**)
- 40 blazars + 33 X-ray **binaries** during flares observed by Swift-BAT, RXTE-ASM and MAXI. Transition states from telegram alerts
- No significant excess
- Upper limits on ν fluence and model parameters constrain
Dark Matter searches

$\text{DM} \rightarrow \nu$
Gravitational trapping and accumulation of DM particles in the centre of astrophysical objects like the Sun and the Galactic centre

DM annihilation would produce a HE neutrino flux with no significant astrophysical backgrounds

\[\nu_\mu \text{ spectrum } \rightarrow \text{WIMPSIM [Blennow,Edsjö,Ohlsson,arXiv:0709.3898]} \]

Bkg estimated from time scrambled data.

No excess observed
The Galactic Center

\[X_{\text{WIMP}} \bar{X}_{\text{WIMP}} \rightarrow \bar{\nu}, \, b\bar{b}, \, W^-, \, W^+, \, \mu^-, \, \mu^+ \]

5 annihilation channels

3 DM halo models in the Milky Way

effect on the thermally averaged cross section

good visibility of the GC

only muon like events considered

\[\text{angular resolution } < 0.4^\circ \]

J-factor – \([\rho^2_{\text{DM}} \text{ integrated over a line of sight at an angular separation } \Psi \text{ from the center of the source}]\) depends on the halo model

\[\frac{d\Phi_{\nu_\mu+\bar{\nu}_\mu}}{dE_{\nu_\mu+\bar{\nu}_\mu}} = \frac{<\sigma v>}{8\pi M^2_{\text{WIMP}}} \cdot \frac{dN_{\nu_\mu+\bar{\nu}_\mu}}{dE_{\nu_\mu+\bar{\nu}_\mu}} \cdot J_{\text{int}}(\Delta \Omega). \]

\[J_{\text{int}}(\Delta \Omega) = \int_{\Delta \Omega} \int_{\rho^2_{\text{DM}}} \cdot dl \cdot d\Omega. \]
Summary

- **ANTARES** → the largest Northern neutrino telescope
- **Search for a neutrino flux from the Southern sky**
- Huge **multimessenger** effort
 - EM radiation: radio (MWA), optical, X-ray, γ-rays (LAT, IACTs)
 - Gravitational Wave observatories and IceCube
- Important contribution to the indirect searches for **Dark Matter**
- Competitive sensitivities and excellent angular resolution in both **track** and **cascade** events because of
 - **OPTICAL PROPERTIES OF THE SEAWATER**
 - **LOCATION** → Northern Hemisphere
 - **DEPTH**
- Main limitation → reduced size

The future: KM3NeT/ARCA
(talk C. James, on Thu)
• Combined 90% CL sensitivities (green line) and limits (points) for E^{-2} spectrum.
• Blue (Red) curves/points indicate ANTARES (IceCube) sensitivities/limits

Highlights of ANTARES-IceCube PS searches

Effective areas (IC, ANTARES)

Angular resolution (IC, ANTARES)

$A_{\text{eff}} [m^2]$

$E [GeV]$

$\sin(\delta)$

$E^2 d\psi/dE [GeV cm^{-2} s^{-1}]$

$\log_{10}(E [GeV])$

[$\Delta_\gamma = -30^\circ$]