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• Introduction: axion strings and domain walls (DWs)

• Field-theoretic simulation of axion topological defects

• Abundance of axion CDM from defects

• Summary

• Current project: upgrading simulation



Axion

CP violation

Strong CP problem in QCD

– Experimental bound:                  ; Why so small?
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Solution: Peccei-Quinn mechanism Peccei & Quinn (1977)

– Anomalous U(1)PQ spontaneously broken at

– Pseudo-NG boson         : axion → candidate of CDMa(x)
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Axion cosmology
Two possibilities: 

• U(1)PQ is broken before inflation

•  U(1)PQ is restored during or after inflation (max[Hinf, T]>fa)

- Random aini. Global strings and DWs form.

- CDM axions are also produced from these topological defects.

- (Almost) homogeneous

- CDM axions from coherent oscillation

- CDM isocurvature perturbations is generated → bound on Hinf
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Formation of axionic defects
•             : U(1)PQ is restoredT > fa V (�)

T > fa

T < fa

•              : U(1)PQ breaks down
- Random distribution of phase: unif(-π,π) 
- Formation of axion strings (~vortex)  
- Axions are radiated from strings

T = fa

time

Φ: PQ complex scalar

•                    : QCD phase transition

- Axion acquires potential ~

- Formation of DWs
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DWs have boundary edged by strings for NDW=1 (e.g. hadronic axion model 
Kim ’79; Shifman, Vainshtein & Zakharov ’80)  
 → DW-string system collapses into axion radiation within a few Hubble time
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Evolution of defect network

- Number of topological defects in a horizon is constant of O(1). 

- Attractor solution: more(less) strings → more(less) inter-commutation 

- Existence of scaling solution allows extrapolation of simulation results 
wrt parameters (to be discussed later)

string

causal patch ~1/H

Thermodynamics: scaling solution



Abundance of axion CDM
Energy density of axion CDM at present

�̄axion(t0) = maxionn̄axion(t0)

Evolution of density  
of defects

Spectrum of radiated  
axions

Estimated from simulations

Number density of axions radiated from topological defects

(Energy loss of string-DW system)

(Mean energy of radiated axions)
=



Lattice simulation
PQ scalar on the lattice Φ(xi, yj, zk)

Field theoretic simulation: first principles calculation (↔ string based action)

(Box size L) > (Horizon 1/H) >> (defect width d) > (lattice spacing=L/Ngrid~O(10-3)L)

Drawback: unphysical parameters

in RD epoch

- Simulations with unphysical parameters & extrapolation to physics point
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String network

Kawasaki, TS, Yamaguchi & Yokoyama in prep



Hiramatsu, Kawasaki, Saikawa & TS (2012)

String-DW system (NDW=1)



Scaling solution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12

ar
ea

 p
ar

am
et

er
 A

conformal time τ / τc

κ = 0.40
κ = 0.35
κ = 0.30
κ = 0.25
κ = 0.20

� = �QCD/Fa

• # of strings in a horizon (=ξ) is constant  
→ scaling solution is realized 

• DWs also scale at first 
• Then quickly decay after energy of 

DWs dominates over strings.
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• ξ is close to 1 
← long-range force/dissipation process 

cf. ξ~10 for local strings (i.e. Abelian Higgs)

QCD PTU(1)PQ PT



Spectrum estimation
Energy spectrum of radiated axions

P (k) = |ȧ(~k)|2

ȧcolor plot: 

Statistical reconstruction of spectrum (~CMB analysis)
- Masking

- Deconvolution
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(
0 (near defects)
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Need to remove contamination from defects

ȧ(�x) = ȧfree(�x) + (string-DW contribution)

string cores

Hiramatsu, Kawasaki, TS, Yamaguchi & Yokoyama (2011)



Axion radiation spectrum

• strings: 

spectrum of axions from strings
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• DWs: 

=ΛQCD/ fa

Smooth dissipation of strings/DWs energy into radiation;  
No evidence for turbulence generating high k radiation



Abundance of axion CDM
 Energy density of axion CDM at present

�̄axion(t0) = maxionn̄axion(t0)

Evolution of density  
of defects

Spectrum of radiated  
axions

Estimated from simulations

 Number density of axions radiated from topological defects

(Energy loss of string-DW system)

(Mean energy of radiated axions)
=



Axion abundance  
when U(1)PQ is restored during or after inflation

- Strings (before DW-domination)

- String-DW (after DW-domination)

- Coherent oscillation
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Three sources:

Contributions of defects are dominant

Constraint on axion decay constant: 



Direct detection
Allowed mass range of axion (when U(1)PQ is restored)
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FIG. 3. Two examples of the discovery potential (light
and dark blue) of our dielectric haloscope using 80 disks
(✏ = 25, A = 1m2, Be = 10T, ⌘ = 0.8, tR = 1day)
with quantum limited detection in a 3-year campaign. We
also show exclusion limits (gray) and sensitivities (coloured)
of current and planned cavity haloscopes [14, 15, 32–36].
The upper inset shows the initial angle ✓I required in Sce-
nario A [37]. The lower inset depicts the fa value corre-
sponding to a given ma, and the three black lines denote
|Ca� | = 1.92, 1.25, 0.746. Note that Scenario B predicts
50µeV . ma . 200µeV [10, 38].

|Ca� | ⇠ 1. In Scenario A, these masses correspond to
large, but still natural, initial angles 2.4 . ✓

I

. 3.12 [37].
Scenario B, our main goal, would be covered including
the theoretical uncertainty in ma (50–200µeV [10, 38])
for KSVZ-type models with short-lived domain walls
(N = 1). Prime examples include the recent SMASHd,u

models (E = 2/3, 8/3) [38]. Models with N > 1 require
ma & meV [10, 39], beyond our mass range. However,
with some exceptions [40] they generally require a tuned
explicit breaking of the PQ symmetry to avoid a domain-
wall dominated universe [41].

CONCLUSION

In this Letter we have proposed a new method to search
for high-mass (40–400µeV) axions by using a mirror and
multiple dielectric disks contained in a magnetic field – a
dielectric haloscope. The key features are a large trans-
verse area and the flexibility to use both broadband and
narrow-band search strategies. With 80 disks one could
search a large fraction of this high-mass range with sen-
sitivity to the QCD axion.
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Upper bound from astrophysics (white dwarfs, SN1987A, etc.)

10-4 eV < ma (< 10-2 eV)

So far the mass range is left untouched by direct detection (e.g. ADMX, CAST),  
but many future projects are being planned to probe the mass range:

- Microwave cavity at high frequency 
ADMX HF, IBS-CAPP

- Nuclear Magnetic Resonance 
ARIADNE [arXiv:1403.1290]

- Dielectric haloscope 
MADMAX [arXiv:1611.04549]



M. Kawasaki, TS, M. Yamaguchi & J. Yokoyama in prep

Pinning down fa and ma in scenario where U(1)PQ is restored 
cf. dependence on initial misalignment θini when U(1)PQ is not restored after inflation  

→ Target mass for direct detection

Current project

Our prediction heavily lies on scaling behaviour
- Existence seems ubiquitous.  
- However, relevant parameters characterising the scaling (e.g. ξ) cannot be predicted.  
- Mild (~logarithmic) parameter dependences etc. may exist? 

→ potential source of major uncertainties

Current project:  
- Updating our simulations from Ngrid=5123  to 40963

- Simulations with a range of parameters will be available
- Testing & improving one-scale model [Kibble 1985,…] w/ significant dissipation 
processes.



Scrutinizing scaling solution
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We estimated the abundance of CDM axions from defects, that  leads to a bound 
                                               . Direct detection experiments will probe the mass 
range in the near future.

Summary
We investigated a scenario where 

• (1)PQ is restored in the early Universe 
• axions CDM are produced from axion strings and domain-walls

However, there have been lots of controversies e.g. on 
• scaling evolution of the network of these defects 
• radiation spectrum of axions from them

Performing field theoretic simulations, we confirmed 
• average # of strings per horizon is ~1 
• mean wave length of radiated axions is around horizon size

fa . (4.6� 7.2)⇥ 1010GeV

We are now upgrading our simulations (Ngrid=40963). Critical test of scaling 
evolution of strings will be focused.


