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Abstract

We consider the Lorentz violating massive gravity for primordial
gravitational waves and study the effects coming from the
squeezed vacuum state on the subsequent B-mode polarization of
the Cosmic Microwave Background. The resulting spectra oscillate
on varying the mass of graviton and squeezing effect and are
compared with the BICEP2/Keck Array at 150 GHz and Planck at
353 GHz collaboration data.
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Inflation

Quantum fluctuations → scalar/density perturbations and
tensor perturbations.

density perturbations → large scale structure of the universe.

tensor perturbations → primordial gravitational waves.
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Primordial GWs

generated by strong variable gravitational field of early
universe through mechanism of parametric amplification of
zero point quantum fluctuations.

Gravitational field acts on GW modes (oscillators).

initial vacuum state → multi-particle quantum state.
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Amplified modes

All modes start in the same vacuum state, but get excited by
various amounts.

Amplified mode of the field → product of function of time
and function of spatial coordinates,

hij (x, η) =
C

(2π)
3
2

∫ +∞

−∞

d3k√
2k

2∑
p=1

[h
(p)
k (η)c

(p)
k +h

(p)∗
k (η)c

(p)†
k ]

× ε(p)∗
ij (k)e−ik.x, (1)

where C =
√

16πlpl is the quantum normalization constant.

Stochastic background, standing wave pattern.
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Squeezing effect

Variance of amplitude is strongly increased while variance of
phase is being squeezed.

Parameter of squeezing grows all the way up in the amplifying
regime.

Squeezing parameter varies from zero in the vacuum state
upto 1 during inflation (0 ≤ rs ≤ 1).

Squeezed GWs form a Gaussian non-stationary background of
standing waves and lead to oscillatory features in spectrum.
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Squeezing effect

Mode function:

hk (η) =
1

a(η)
[uk (η) + v∗k (η)], (2)

where,

uk = e iθk cosh rs ,

vk = e−i(θk−2γ) sinh rs .

Tensor power spectrum of GWs may be written as,

PT (k) = AT (k0)

(
k

k0

)nT [
1 + 2 sinh2 rs

+ sinh 2rs cos
(
γ + (2− nT )

π

2

) ]
. (3)
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Lorentz violating Massive gravity

Action:

S = SEH + SG ,

=

∫
d4x
√
−g [−m2

plR + Λ4F (Z ij )], (4)

The argument Z ij is constructed as

Z ij = X γW ij ,

X = Λ−4gµν∂µζ
0∂νΦ0,

W ij = Λ−4gµν∂µΦi∂νΦj − V iV j

X
,

V i = Λ−4gµν∂µΦ0∂νΦi , (5)

where β is a constant free parameter and Φ0(x), Φi (x),
(i = 1, 2, 3) are the four scalar fields.
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Lorentz violating Massive gravity

The vacuum solutions corresponding to the flat space:

gµν = a2ηµν ,

Φ0 = Λ2t, (6)

Φi = Λ2x i .

The perturbations after the spontaneous Lorentz symmetry
breaking may be written as

gµν = a2ηµν + δgµν , (7)

where a(η) is the scale factor, ηµν is the flat space metric and gµν
is the metric perturbation after the spontaneous Lorentz symmetry
breaking.
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Lorentz violating Massive gravity

The components of the metric perturbation δgµν are given by

δg00 = 2a2ϕ,

δg0i = a2(Ni − ∂iA), (8)

δgij = a2[−hij − ∂iQj − ∂jQi + 2(ψδij − ∂i∂jE )],

where hij is the transverse-traceless tensor perturbation, ϕ, ψ, A
and E are scalar fields and Ni and Qi are transverse vector fields.
Lagrangian:

Lm =
m2

pl

2
(m2

0h00h00 +2m2
1h0ih0i−m2

2hijhij +m2
3hiihjj−2m2

4h00hii ),

where the mass parameters m0, m1, m2, m3, m4 are related to the
function F (Z ij ) and its derivatives.
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Lorentz violating Massive gravity

m2
0 =

Λ4

m2
pl

[XFX + 2X 2FXX ],

m2
1 =

2Λ4

m2
pl

[−XFX −WFW +
1

2
XWFVV ],

m2
2 =

2Λ4

m2
pl

[WFW − 2W 2FWW 2], (9)

m2
3 =

Λ4

m2
pl

[WFW + 2W 2FWW 1],

m2
4 = − Λ4

m2
pl

[XFX + 2XWFXW ],
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where,

W = −1/3δijW
ij ,

∂F

∂X
= FX ,

∂2F

∂X 2
= FXX ,

∂F

∂W ij
= FW δij , (10)

∂2F

∂V i∂V j
= FVV δij ,

∂2F

∂W ij∂W kl
= FWW 1δijδkl + FWW 2(δikδjl + δijδjk ),

∂2F

∂X∂W ij
= FXW δij .
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Lorentz violating Massive gravity

There is a number of different regions in the mass parameter
space where massive gravity is described by a consistent
low-energy effective theory with strong coupling scale
Λ ∼ (mmpl )

1/2 which implies a ghost-free scenario.

In the vector sector, provided m2 6= 0, the vector field behaves
in the same way as in the Einstein theory in the gauge Fi = 0;
hence no propagating vector perturbations.

In the scalar sector, the scalar field has massless limit which
coincides with the GR expression; hence no vDVZ
discontinuity.

In the tensor sector, only the transverse-traceless
perturbations hij are present and their field equation is that of
a massive field with the mass m2 with helicity-2.
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The dynamical equation of motion for massive gravitational waves
can be written as

h
(m)′′
ij (η) + 2Hh(m)′

ij (η) + k2h
(m)
ij (η) + a2m2

gwh
(m)
ij (η) = 0, (11)

where mgw ≡ m2 is the mass of the graviton.
Fourier decomposition of the mode hij can be written as

h
(m)
ij (x, η) =

D

(2π)
3
2

∫ ∞
−∞

d3k√
2Ek

[h
(m)
k (η)c

(m)
k ε

(m)
k (k)e ik.x

+h
(m)∗
k (η)c

(m)†
k ε

(m)∗
k (k)e−ik.x], (12)

where D =
√

16πlpl , lpl =
√
G and Ek is the energy of the mode.
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Using Eq.12 in Eq.11, we get

h
(m)′′
k (η) + 2Hh(m)′

k (η) + (k2 + a2m2
gw )h

(m)
k (η) = 0. (13)

From here onward, the polarization p is dropped for convenience.
The mode function is

µ
(m)
k (η) = a(η)h

(m)
k (η). (14)

Using Eq.14 in Eq.13, and H = a′

a , we get

µ
(m)′′
k +

(
k2 + a2m2

gw −
a′′

a

)
µ

(m)
k = 0. (15)

The dispersion relation:

k2

a2
+ m2

gw = w2, (16)
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The two-point correlation function of hij gives the power spectrum
which, for massive gravitational waves, can be written as

P(wH) ≡ d

d lnwH
〈0|hij (x, η)hij (x, η)|0〉, (17)

where

〈0|hij (x, η)hij (x, η)|0〉 =
C 2

2π2

∫ ∞
0

k2|hk (η)|2 dk
k
, (18)

is the variance of the field.
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Enhancement due to mass term

Calculating the power spectrum for massive GWs and that for
massless (GR) GWs and taking the ratio of massive to massless
spectra, one gets the enhancement factor due to mass as 1

S(wH) =
k ′ak

kaGR
k ′

√
wkak

w0a0
, (19)

where, k ′ = a0w0.
Enhancement factor:

S(w0) ' ahc

aGR
k0

√
khc

k0

(
w2

0

m2
gw ,0

− 1

)− 1
2

. (20)

1”Gravitational wave signal from massive gravity” by Emir Gumrukcuoglu
et.al., arXiv:1208.5975v2 [hep-th] (2012)

N. Malsawmtluangi and P.K. Suresh Primordial massive gravitational waves in the squeezed vacuum state



Introduction
Squeezing effect
Massive gravity
CMB spectrum

Inflation and inflationary models
Conclusion

CMB polarization

Polarization → E-mode and B-mode.

B-mode → primordial GWs and lensing.

Anisotropy due to lensing will act to smooth out the acoustic
peaks in the spectrum on intermediate to small angular scales.

If gravitons are massive, then the small mass would leave a
signature on the temperature anisotropy and polarization
spectrum of CMB.
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For primordial GWs, the upper bound on the graviton mass
≤ 10−30 eV (≡ 10−16 Hz) 2, and lower bound has been
proposed to be > 10−29 cm−1 (≡ 10−19 Hz)3.

It has been shown that gravitons with masses within the range
10−27 cm−1 and 10−26 cm−1 (10−17Hz ≤ mgw ≤ 10−16Hz)
would leave a clear signature on the lower multipoles in the
CMB anisotropy spectrum. 4

2S. L. Dubovsky, JHEP 0410 (2004) 076; S. Dubovsky, R. Flauger, A.
Starobinsky and I. Tkachev, Phys. Rev. D 81 (2010) 023523

3D. Bessada and O. D. Miranda, JCAP 0908 (2009) 033
4D. Bessada and O. D. Miranda, JCAP 0908 (2009) 033
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BB-mode spectrum

The BB-mode correlation angular power spectrum of CMB is given
by

CBB
l = (4π)2

∫
dkk2PT (k)

×
∣∣∣∣∫ η0

0
dηg(η)hk (η)

{
(8x + 2x2∂x )

jl (x)

x2

}
x=k(η0−η)

∣∣∣∣2 ,
where g(η) = κe−κ is the probability distribution of the last
scattering, κ is the differential optical depth, x = k(η0 − η) and
jl (x) is the spherical Bessel function.
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Limit for the spectrum

The limit (BK x BK - α BK x P)/(1 - α) at α = αfid = 0.04 is
evaluated from the auto-spectra and cross-spectra of the combined
BICEP2/Keck 150 GHz maps and Planck 353 GHz maps to clean
out the dust contribution.
This combination for the limit is taken after the subtraction of the
dust contribution which is 0.04 times as much in the BICEP2 band
as it is in the Planck 353 GHz band.
Constraints are based on B-mode estimated from the density
fluctuations from CMB by BKP joint data (2015), r < 0.07 for
upper limit with lower limit O(10−3).
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Starobinsky (R2) Inflation Model
Higgs Inflation Model
Natural Inflation Model
Coleman-Weinberg Inflation Model

Inflationary scenario

The inflaton field φ is governed by the equation of motion

φ̈+ 3Hφ̇+ V ′ = 0, (21)

where H, the Hubble parameter, is determined by the energy
density of the field

ρφ =
φ̇2

2
+ V (φ).

Slow roll parameters

ε ≡
m2

pl

2

(
V ′

V

)2

, η ≡ m2
pl

(
V ′′

V

)
(22)

r , nT → determined by equations of state during inflation.
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Starobinsky (R2) Inflation Model
Higgs Inflation Model
Natural Inflation Model
Coleman-Weinberg Inflation Model

Starobinsky (R2) Inflation Model

Action:

A =

∫
d4x
√
−g

m2
pl

2

(
R +

R2

6m2

)
, (23)

where R is the Ricci scalar and m is the inflaton mass.
Effective potential:

V (φ) = M4(1− e−
√

2/3φ/mpl )2. (24)

The slow-roll parameters are,

ε = 2.03× 10−4,

η = −1.63× 10−2. (25)

Tensor-to-scalar ratio: r = 3.25× 10−3. Tensor spectral index:
nT = −4.06× 10−4. Tensor power spectrum: PT = 7.9× 10−12.
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Starobinsky (R2) Inflation Model
Higgs Inflation Model
Natural Inflation Model
Coleman-Weinberg Inflation Model
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Figure: BB-mode angular spectra for Starobinsky (R2) Inflation model for
squeezing parameter rs = 0.1.
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Figure: BB-mode angular spectra for Starobinsky (R2) Inflation model for
squeezing parameter rs = 0.6.
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Figure: BB-mode angular spectra for Starobinsky (R2) Inflation model for
squeezing parameter rs = 0.95.
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Higgs Inflation Model

Effective potential:

V (φ) = M4(1 + e−
√

2/3φ/mpl )−2. (26)

The slow-roll parameters are,

ε = 1.77× 10−4,

η = −1.48× 10−2. (27)

Tensor-to-scalar ratio: r = 2.83× 10−3. Tensor spectral index:
nT = −3.53× 10−4. Tensor power spectrum: PT = 6.87× 10−12.
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Figure: BB-mode angular spectra for Higgs Inflation model for squeezing
parameter rs = 0.1.
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Figure: BB-mode angular spectra for Higgs Inflation model for squeezing
parameter rs = 0.6.
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Figure: BB-mode angular spectra for Higgs Inflation model for squeezing
parameter rs = 0.95.
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Natural Inflation Model

Effective potential:

V (φ) = M4

[
1 + cos

(
φ

f

)]
, (28)

where f /mpl = 102, M/mpl = 10−2. The slow-roll parameters are,

ε = 1.29× 10−3, (29)

η = 1.24× 10−3. (30)

Tensor-to-scalar ratio: r = 2.06× 10−2. Tensor spectral index:
nT = −2.58× 10−3. Tensor power spectrum: PT = 5.027× 10−11.
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Figure: BB-mode angular spectra for Natural Inflation model for
squeezing parameter rs = 0.1.
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Higgs Inflation Model
Natural Inflation Model
Coleman-Weinberg Inflation Model
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Figure: BB-mode angular spectra for Natural Inflation model for
squeezing parameter rs = 0.6.
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Figure: BB-mode angular spectra for Natural Inflation model for
squeezing parameter rs = 0.95.
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Coleman-Weinberg Inflation Model

Effective potential:

V (φ) = M4

[
1 + α

(
φ

σ

)4

ln

(
φ

σ

)]
, (31)

where α = 4e, M = 1016 GeV, σ = 10mpl . The slow-roll
parameters are,

ε = 4.86× 10−4, (32)

η = −4.42× 10−2. (33)

Tensor-to-scalar ratio: r = 7.77× 10−3. Tensor spectral index:
nT = −9.72× 10−4. Tensor power spectrum: PT = 1.89× 10−11.
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Figure: BB-mode angular spectra for Coleman-Weinberg Inflation model
for squeezing parameter rs = 0.1.
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Figure: BB-mode angular spectra for Coleman-Weinberg Inflation model
for squeezing parameter rs = 0.6.
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Figure: BB-mode angular spectra for Coleman-Weinberg Inflation model
for squeezing parameter rs = 0.95.
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Conclusion

There is oscillation on the angular spectrum due to squeezing
effect and mass term.

Squeezing effect may help in constraining not only the
inflation models, but also in further constraining the mass of
the graviton.

While there is enhancement in the power level relative to the
massless spectrum for mgw & 1.4× 10−16 Hz, there is
damping in the power for mgw < 1.4× 10−16 Hz due to the
dispersion relation.
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Conclusion

The spectrum for mgw ' 1.4× 10−16 Hz (≡ 5.79× 10−31 eV)
lies closest to that of the massless case.

The increase/decrease in power level due to mass is greater
for models with larger deviation (nT ) from scale invariance.

The spectra with masses mgw = 2.418× 10−17 Hz (≡ 10−31

eV) and mgw = 2.418× 10−18 Hz (≡ 10−32 eV) lie marginally
within the limit at higher multipole, hence there is a chance
that the lower limit for the graviton mass may be higher than
these masses. At the same time, there is also a chance that
the upper limit for the graviton mass may also be higher than
mgw = 10−30 eV.
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