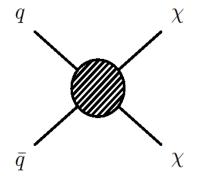
Dark Forces in the Sky: Signals from Z' and the Dark Higgs

Nicole Bell
The University of Melbourne

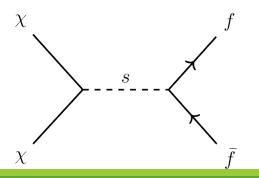
with Yi Cai & Rebecca Leane

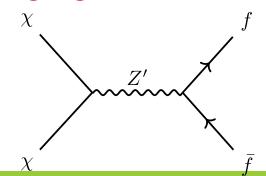
arXiv:1605.09382, arXiv:1610.03063

Outline


- Introduction
 Dark matter models, unitarity, and gauge invariance
- The Z' and the Dark Higgs
 A two mediator scenario motivated by gauge invariance
- Dark sector mass generation & implications
 Higgs, Stueckelberg, bare mass
- o Conclusions

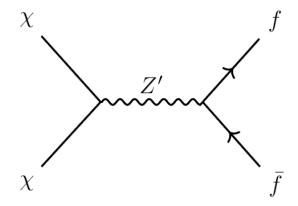
Dark matter and unitarity


Non-renormalizble EFT operators such as


$$\frac{1}{\Lambda_{\rm eff}^2} \left(\bar{\chi} \, \Gamma_{\chi} \chi \right) (\bar{f} \, \Gamma_{f} f)$$

violate perturbative unitarity at high energy, as $\sigma \sim E^2/\Lambda^4$

- But unitarity issues go beyond using EFTs outside their region of validity.
- Simplified Models have unitarity issues too if they break either Standard Model or dark-sector gauge invariance



Unitarity and Simplified Models

Consider a model where DM couples to SM fermions via a spin-1 mediator, Z'

Assume Z' is the gauge boson of a new U(1) symmetry)

Axial vector couplings \rightarrow unitarity is violated at high energy See,e.g. Kahlhoefer et al, arXiv:1510.02110, arXiv:1606.07609

Problem is that the Z' mass breaks U(1) gauge-invariance. Need a Higgs mechanism to provide mass and restore unitarity.

Z' and a dark Higgs

Axial vector mediator implies the existence of a dark Higgs field

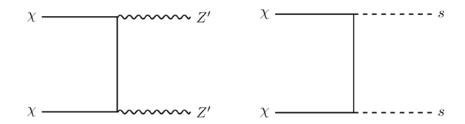
- → A Simplified model with only a DM candidate and an axial vector mediator is too simple!
- → Motivates a two-mediator model (spin-1 & spin-0 mediators)
- → The presence of both a spin-1 and spin-0 mediator leads to interesting new phenomenology, not captured by a single mediator scenario.

Majorana DM χ , axial vector mediator Z' & dark Higgs S

$$L = L_{SM} + L_{dark} + L_{mix}$$

$$L_{dark} = \frac{i}{2} \bar{\chi} \partial^{\mu} \gamma_{\mu} \chi - \frac{1}{4} g_{\chi} \bar{\chi} \gamma_{5} \gamma_{\mu} \chi Z'^{\mu} - \frac{1}{2} y_{\chi} (\bar{\chi}_{L}^{C} \chi_{L} S + h.c)$$

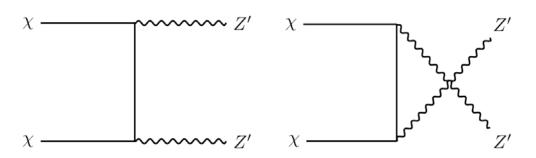
$$+ (D^{\mu} S)^{\dagger} (D_{\mu} S) - \mu_{S}^{2} S^{\dagger} S - \lambda_{S} (S^{\dagger} S)^{2}$$


- VEV of S leads to masses for χ and Z'
- U(1) charges of χ and S are related: $Q'(S) = 2Q'(\chi)$
- couplings and masses related: $\frac{y_{\chi}}{g_{\chi}} = \frac{\sqrt{2}m_{\chi}}{m_{Z}'}$

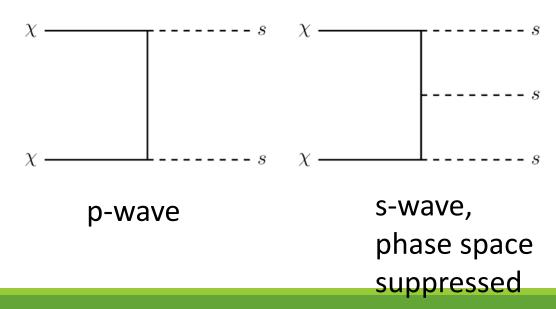
$$L_{mix} = -\lambda_{HS}(S^{\dagger}S)(H^{\dagger}H) - \frac{1}{2}sin\epsilon Z'^{\mu\nu}B_{\mu\nu}$$

• Small SM – dark-sector mixing allows decay of S, Z' mediators

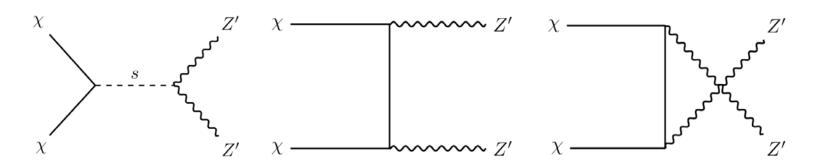
Z'+dark Higgs -- Hidden Sector Model


Assume DM annihilates directly to dark sector mediator Z' & S i.e. a hidden sector model

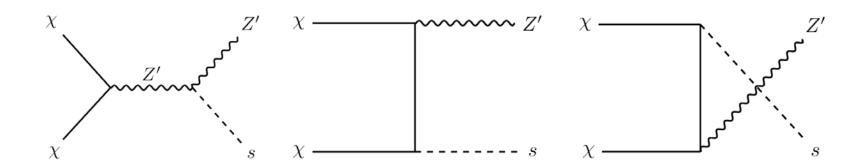
- Z' decay to SM via small kinetic mixing with Z
- Dark-Higgs decays to SM via small mixing with SM Higgs
- ✓ Dark-visible sector couplings can be small, to satisfy collider and direct detection constraints
- ✓ Large indirect detection signals possible


Annihilation to the mediators

Simplified Model with vector mediator

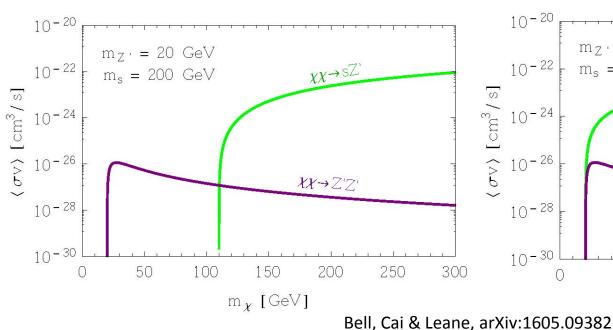


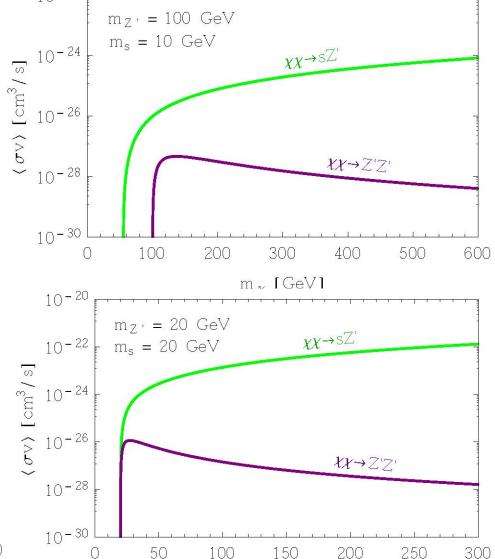
s-wave


Simplified Model with scalar mediator

Including both mediators

New contribution to $\chi\chi\to Z'Z'$ (prevents unphysical high energy behaviour)

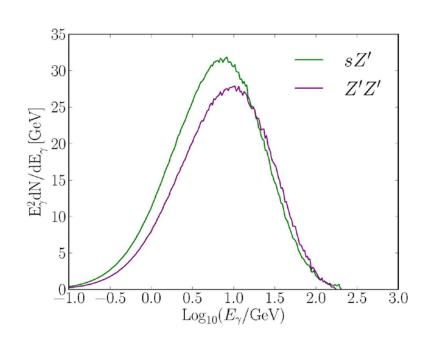

New s-wave annihilation process $\chi \chi \to s Z'$

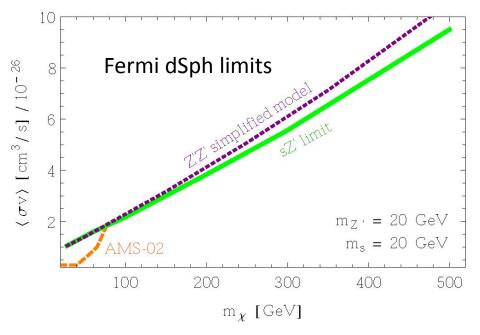

Bell, Cai & Leane, arXiv:1605.09382

S-wave annihilations to both sZ' and Z'Z'

sZ' process dominates over Z'Z' when kinematically allowed.

sZ' enhanced by
$$Z_L'$$
: $(\sigma v)_{SZ'} \sim \frac{m_\chi^2}{m_{Z'}^4}$





 m_{χ} [GeV]

Indirect detection limits from Fermi dSphs

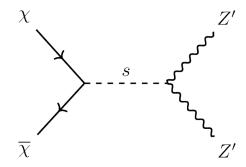
- Z' decay to SM via small kinetic mixing term
- S decays to SM via small Higgs mixing term
- Resulting gamma ray spectra are similar

Dark sector mass generation

Majorana DM

- only axial-vector couplings to a Z' allowed
- dark Higgs mechanism gives mass to both Z' and DM.

Dirac DM

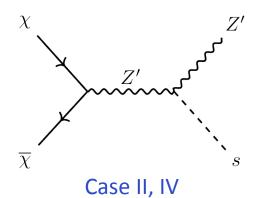

- Both vector and axial-vector couplings to Z' allowed
 - If Z' has pure vector couplings
 - Z' mass: either Higgs or Stueckelberg mechanism
 - DM mass: bare mass or Higgs mechanism
 - mass mechanisms not necessarily connected.
 - If Z' has non-zero axial coupling
 - Dark Higgs gives mass to both Z' and DM (like Majorana)

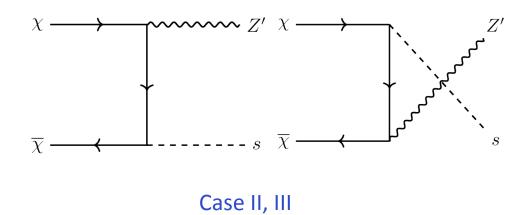
Dark sector mass generation (Dirac)

Case	DM mass	Z' mass	DM-Z' coupling	Annihilations	Z' polarization
I	Bare mass	Stueckelberg	Vector	$\bar{\chi}\chi \to Z'Z'$	transverse
II	Dark Higgs	Dark Higgs	Axial & Vector or pure Axial $\neq 0$)	$\bar{\chi}\chi \to Z'Z'$ $\bar{\chi}\chi \to sZ'$	transverse & longitudinal
III	Dark Higgs	Stueckelberg	Vector	$\bar{\chi}\chi \to Z'Z'$ $\bar{\chi}\chi \to sZ'$	transverse
IV	Bare mass	Dark Higgs	Vector	$\bar{\chi}\chi \to Z'Z'$ $\bar{\chi}\chi \to sZ'$	transverse

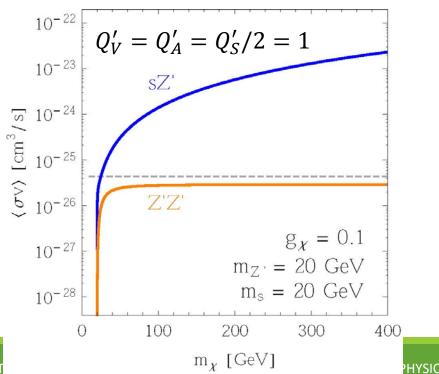
Bell, Cai & Leane, arXiv:1610.03063

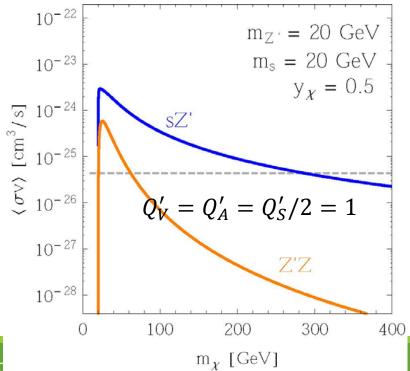
$\chi\chi \to Z'Z'$




Case II only

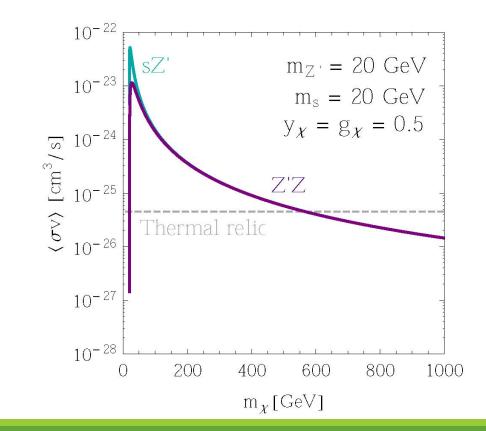
Case I, II, III, IIII

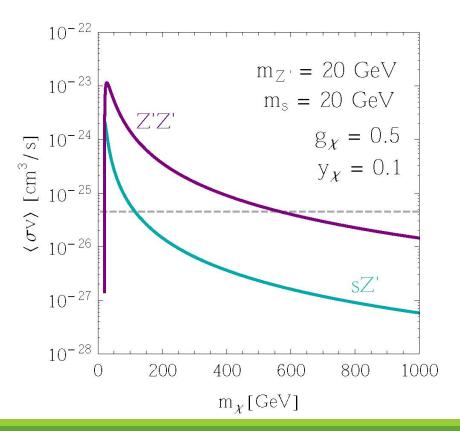

$\chi\chi\to sZ'$



Z' and DM mass from dark Higgs

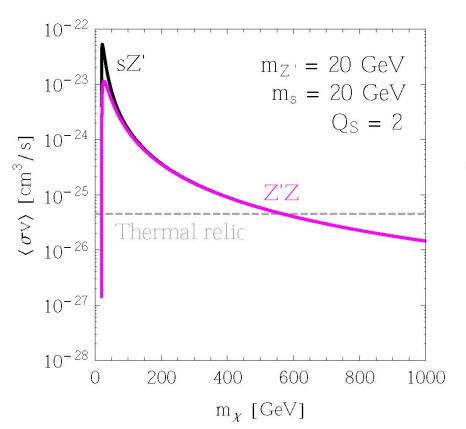
- Couplings related: $\frac{y_{\chi}}{g_{\chi}} = \frac{\sqrt{2}m_{\chi}}{m_{Z}'}$
- $Q'_S = Q'_{\chi_L} Q'_{\chi_R} \equiv 2Q'_A$, $Q'_V = unconstrained$
- sZ' dominates over Z'Z' when kinematically allowed
- Cross sections enhanced by longitudinal Z' (for Z'Z' this only occur when Q'_V , Q'_A both nonzero)

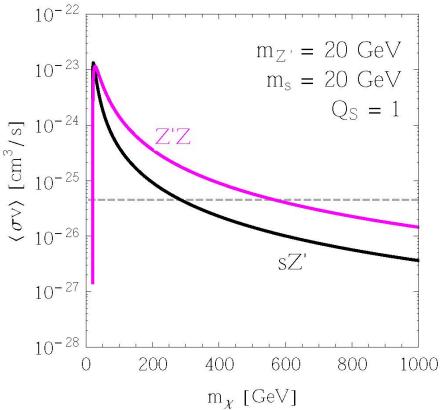


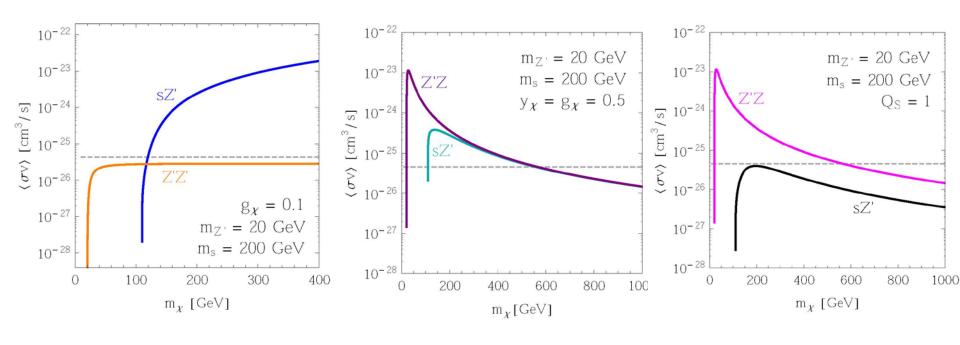

13TH INT

15

DM mass from dark Higgs & Z' mass from Stueckelberg


- y_χ and g_χ unrelated
 - → freedom to dial relative strength of the two annihilation processes
- Only transverse polarized Z'




Bare DM mass & Z' mass from dark Higgs

- U(1) charge of Z' and S unrelated
- \rightarrow freedom to dial relative strength of the two annihilation process
- Only transverse polarized Z'

Enhancement from longitudinal Z' only for axial couplings

Bell, Cai & Leane, arXiv:1610.03063

Summary

- Single mediator Simplified Models may not be self consistent
 - > Two mediators can be required by gauge invariance
 - Phenomenology not captured by single-mediator model
- riangle Axial vector Z' requires dark Higgs (S) to unitarize Z'_L
 - \triangleright New, dominant, s-wave annihilation channel $\chi\chi\to sZ'$
- Dark sector generation mechanisms should not be ignored
 - Choice of mass generation mechanism dictates the allowed coupling structure and annihilation processes