Blue Tensor Spectra (with slightly parity-violated) from axion-gauge couplings

Ippei Obata (Kyoto University, PhD)

Primordial GWs from the inflation

Tensor power spectrum (vacuum fluctuations):

$$\Delta_h^{\pm} = \left. \frac{H^2}{\pi^2 M_p^2} \right|_{k=aH} = A_t \left(\frac{k}{k_0} \right)^{n_t < 0}$$

info

- > Energy scale of early Universe
- > Red-tilted.
- > Parity-symmetric.
- > Tiny amplitude.

r < 0.07

BICEP2/Keck Array (2016

Is it detectable directly?

Sensitivity curves of DECIGO:

Ando (2013, DECIGO workshop)

challenging for $r < \mathcal{O}(0.01)!$

if the source of GWs is vacuum fluctuations

Additional sources of GWs

Sorbo (2011), Barnaby et al. (2011), ...

(inflationary axion-gauge coupling)

$$\mathcal{L} = -\frac{1}{2}(\partial\varphi)^2 - V(\varphi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \underbrace{\frac{1}{4}\frac{\varphi}{f}F_{\mu\nu}\tilde{F}^{\mu\nu}}_{[F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}]}$$

EOM for gauge field:

$$\frac{d^2 A_k^{\pm}}{d\tau^2} + \left(k^2 + \frac{2k\xi}{\tau}\right) A_k^{\pm} = 0 \qquad \xi \equiv \frac{\dot{\bar{\varphi}}}{2fH} > 0 , \ \tau = -(Ha)^{-1} < 0$$

$$A_k^+ / e^{\pi \xi}$$
 (One helicity mode enhancement!)

→Additional sources for scalar and tensor perturbations!

Testable chiral blue tensor spectrum

Valerie et al. 2016

Tensor spectrum:

$$\simeq \Delta_h^V + \Delta_{h+}^S$$

$$= \Delta_h^V \left[1 + 10^{-6} \frac{H^2}{M_p^2 \xi^6} e^{4\pi \xi} \right]$$

$$\xi(t) \propto \dot{\bar{\varphi}}(t) : \text{increasing in time}$$

Preferable parameter region

$$\xi \sim \frac{\sqrt{\epsilon_{\varphi}}}{f} \gtrsim \mathcal{O}(1) \leftrightarrow f \lesssim 10^{-2} M_p$$

Testable chiral blue tensor spectrum

Valerie et al. 2016

Natural scale predicted by the heterotic superstring!

Svrcek & Witten (2005)

$$(f \sim \frac{\alpha_G}{2\pi} M_p, \ \alpha_G : \text{GUT gauge coupling})$$

Our question and study

Question...

? : Testable blue tensor spectrum \leftrightarrow EFT of the heterotic string theory

In this work...

- ✓ We explore the concrete model building based on the heterotic string theory and reconsider the form of axion-gauge couplings.
- ✓ We found that rich varieties of blue tensor spectra could be provided sourced by gauge fields coupled to two types of axions.

Axions from the heterotic superstring

$$E_8 \times E_8$$

Choi &Kim (1985), ...

Axions arise from the B field:

$$B = B_{MN} dx^M \wedge dx^N \, (M, N = 0 \sim 9)$$

$$H=dB-\omega_Y+\omega_L$$
 : its field strength $(d\omega_Y={
m Tr} F^2, d\omega_L={
m Tr} R^2)$

Two types of axion

"Model-independent" type
$$H_{\mu\nu\rho}=M_1\epsilon_{\mu\nu\rho\alpha}\partial^{\alpha}\varphi_1$$
 $_{(\mu,\,\nu,\,...\,=\,0\,\sim\,3)}$

"Model-dependent" type
$$H_{\mu mn}=M_2\epsilon_{mn}\partial_{\mu}arphi_2$$
 $_{(m,\,n,\,...\,=\,4\,\sim\,9)}$

compactification

Axions from the heterotic superstring

$$E_8 \times E_8$$

Choi &Kim (1985), ...

Origin of axion-gauge couplings:

Bianchi identity:
$$dH=-{\rm Tr} F^2+{\rm Tr} R^2 \qquad (F^2\equiv F\wedge F, R^2\equiv R\wedge R) \\ (=f_1\Box\varphi_1)$$

Anomaly cancellation term:
$$S_{\rm GS}=rac{1}{48(2\pi)^5}\int_{
m M_4}{
m Tr}F^2\int_{
m M_6}B\left[{
m Tr}F^2-rac{1}{2}{
m Tr}R^2+...
ight]$$

 $\operatorname{Tr} F^2 = \operatorname{Tr} F_1^2 + \operatorname{Tr} F_2^2$

4-dim. reduced axion-gauge coupling

Model-independent axion:
$$-\frac{1}{4}\frac{\varphi_1}{f_1}\left(F_1\tilde{F}_1 + F_2\tilde{F}_2\right)$$

Model-dependent axion:
$$-\frac{1}{4}\frac{\varphi_2}{f_2}\left(F_1\tilde{F}_1 - F_2\tilde{F}_2\right)$$

(omitting Lorentz indices)

Source of GWs from superstring

Model example (1):

$$\mathcal{L} \supset -\frac{1}{4} \frac{\varphi_2}{f_2} \left(F_1 \tilde{F}_1 - F_2 \tilde{F}_2 \right) - V(\varphi_2)$$

 $F_{1,2}$: Abelian gauge field (for simplicity)

$$\frac{d^2 A_{1k}^{\pm}}{d\tau^2} + \left(k^2 \pm \frac{2k\xi}{\tau}\right) A_{1k}^{\pm} = 0 \longrightarrow A_{1k}^{+} \nearrow e^{\pi\xi} \longrightarrow h^{+}$$

$$\frac{d^2 A_{2k}^{\pm}}{d\tau^2} + \left(k^2 \pm \frac{2k\xi}{\tau}\right) A_{2k}^{\pm} = 0 \longrightarrow A_{2k}^{-} \nearrow e^{\pi\xi} \longrightarrow h^{-}$$

→ parity-symmetric blue tensor spectra!

Source of GWs from superstring

Model example (2):

$$\mathcal{L} \supset -\frac{1}{4} \left(\frac{\varphi_1}{f_1} + \frac{\varphi_2}{f_2} \right) F_1 \tilde{F}_1 - \frac{1}{4} \left(\frac{\varphi_1}{f_1} - \frac{\varphi_2}{f_2} \right) F_2 \tilde{F}_2 - V(\varphi_1, \varphi_2)$$

 $F_{1,2}$: Abelian gauge field (for simplicity)

$$\text{diagonalising} \quad \varphi \equiv \frac{f_2}{\sqrt{f_1^2 + f_2}} \varphi_1 - \frac{f_1}{\sqrt{f_1^2 + f_2^2}} \varphi_2 \; , \; \tilde{\varphi} \equiv \frac{f_1}{\sqrt{f_1^2 + f_2^2}} \varphi_1 + \frac{f_2}{\sqrt{f_1^2 + f_2^2}} \varphi_2$$

$$\to -\frac{1}{4} \frac{\varphi}{f} \left(F_2 \tilde{F}_2 + \frac{f_2^2 - f_1^2}{f_1^2 + f_2^2} F_1 \tilde{F}_1 \right) - \frac{1}{4} \frac{\tilde{\varphi}}{\tilde{f}} F_1 \tilde{F}_1 - V(\varphi, \tilde{\varphi})$$

if $\tilde{\varphi}$ has been stabilized and $f_1 \gg f_2...$

$$\rightarrow -\frac{1}{4}\frac{\varphi}{f}\left(F_2\tilde{F}_2 - (1-2\epsilon)F_1\tilde{F}_1\right)$$
$$\epsilon \equiv f_2^2/f_1^2 \ll 1$$

→ slightly parity-violated blue tensor spectra!

Main Results

ex:
$$V(\varphi) = V_0 \left[1 - \cos \left(\frac{\varphi}{h} \right) \right]$$

- ✓ Bule-tilted and slightly parity violated spectra.
- ✓ Testable by future gravitational wave interferometers (DECIGO, BBO).
- ✓ Avoiding the overproduction of scalar modes.

Summary & Outlook

- ✓ We explore the concrete model building based on the heterotic string theory and reconsider the form of axion-gauge couplings.
- ✓ We found that rich varieties of blue tensor spectra sourced by gauge fields coupled to the model-(in)dependent axion could be provided.
- ? Possible potential forms of axion, the non-Abelian gauge interaction, ...

Working in progress!