

The CMB is polarised (~10%)

 Any polarisation pattern can be decomposed into "E" (grad) and "B" (curl) modes

 Density fluctuations at LSS do not produce "B" modes!

The South Pole Telescope (SPT)

Sub-millimeter Wavelength Telescope:

- 10 meter telescope (1.1' FWHM beam)
- Off-axis Gregorian optics design
- Fast scanning (up to 2 deg/sec in azimuth)

Collaboration

• 2" pointing accuracy

The South Pole Telescope (SPT)

SPTpol - 2nd camera on SPT

- 1536 *polarization-sensitive* bolometers
- 500 deg² survey
 8 μK-arcmin @ 95 GHz
 5 μK-arcmin @ 150 GHz

The South Pole Telescope (SPT)

SPT-3G - 3rd camera on SPT

- 10x more bolometers (16,200)
- 2500 deg² survey in 95, 150, 220 GHz
- Being installed now! First light in February!

The South Pole Telescope (SPT) SPT-3G receiver starting trip to Pole: Left Chicago: Oct 30, 2016 Arr. Christchurch: Nov 2, 2016 People got to Pole in early November to begin work

A tour of the SPTpol survey field using WorldWide Telescope

E-modes - A noise map

- Map from the first half of the season minus the second half
- Noise: 9.4 µK-arcmin between 2000 < ℓ < 4000.

E-modes measured with SPTpol

- High signal-to-noise!

TE Power Spectra

- Model not fit to data! (Planck plikHM_TT_lensing_lowTEB)
- Sample-variance limited at ℓ < 2050

EE Power Spectrum

- Sample-variance limited at ℓ < 1750
- 9(?) acoustic peaks as many as in Temperature!

EE Power Spectrum

- Poisson power crosses EE at \(\epsilon \) 3800.
- Source mask: > 50 mJy (in T)

CMB Polarisation

CMB Polarisation

Whitehorn et al arXiv:1604.03507

- Searches observations of 100 deg² field (2012early 2013).
- SPTpol sensitive to ~ >
 10 mJ transients over range of durations.
- Low significance candidate (PTE = 0.01)
 - broadly consistent with gamma-ray burst afterglow.

Transient Search

In conclusion

- The SPTpol 500d survey:
 - Detect 9 acoustic peaks in EE (as many as TT!)
 - Best measurements of polarised damping tail
- SPT-3G being commissioned as we speak
 - 10x more detectors (95, 150, 220 GHz)
 - 18x lower noise than Planck 143 GHz channel across 2500 deg²
- Planning underway for stage IV experiment with ~2 million detector-year survey