Evaporation on GeV-ish DM in the Sun

Analysis of light DM Evaporation in the Sun Based on: in preparation (Busoni, De Simone, Scott, Vincent)

G. Busoni

CoEPP University of Melbourne

CosPA 2016, 29 Nov 2016

- Introduction and Motivations
 - Dark Matter in the Sun
 - Sound speed profile in the Sun

- Our Work
 - Multiple Scattering
 - Evaporation

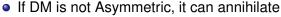
- Introduction and Motivations
 - Dark Matter in the Sun
 - Sound speed profile in the Sun
- Our Work
 - Multiple Scattering
 - Evaporation

Introduction

DM capture by the Sun

- Same concept as in DD
- After interacting, the particle may remain trapped in the Sun gravitational well

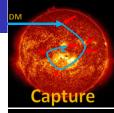
- Input to calculate Capture Rate C:
 - Sun Physics: temperature and abundance profiles
 - DM mass, density and velocity distribution (assume MB)
 - DM-proton c.o.m. differential cross section


$$\frac{d\sigma}{d\cos\theta} = \sigma_0 + \sigma_{v,i} \left(\frac{v_r}{v_0}\right)^{2i} + \sigma_{q,i} \left(\frac{q_{tr}}{q_0}\right)^{2i}$$

ullet Usually DD experiments consider only σ_0

Astrophys. J. 321 (1987) 560,571; Astrophys. J. 352 (1990) 654.

Introduction


Annihilation and Evaporation

- ullet Annihilation term proportional to N^2
- Neutrino products possible DM signal
- If DM is light, a subsequent scattering may let it escape (evaporation)
 - ullet Evaporation term proportional to N

$$\frac{dN}{dt}(t) = C - EN(t) - AN^{2}(t)$$

For light DM, Evaporation sets an upper bound on the captured DM particles!

• For A=0, the solution for the previous equation is

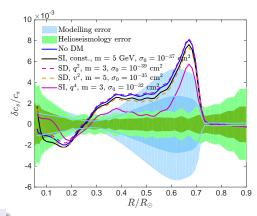
$$N(t_{\odot}) = \frac{C}{E} \left(1 - e^{-Et_{\odot}} \right) = Ct_{\odot} \frac{1 - e^{-Et_{\odot}}}{Et_{\odot}}$$

$$N(t_{\odot}) = \begin{cases} N(t_{\odot}) = Ct_{\odot} & \text{if } Et_{\odot} \ll 1\\ N(t_{\odot}) = \frac{C}{E} \ll Ct_{\odot}, & \text{if } Et_{\odot} \gg 1 \end{cases}$$

Contribute of evaporation given by the factor

$$\gamma_E = \frac{1 - e^{-Et_{\odot}}}{Et_{\odot}}$$

- Introduction and Motivations
 - Dark Matter in the Sun
 - Sound speed profile in the Sun
- Our Work
 - Multiple Scattering
 - Evaporation


Motivations

Solar Abundance Problem and Energy Transport in the Sun

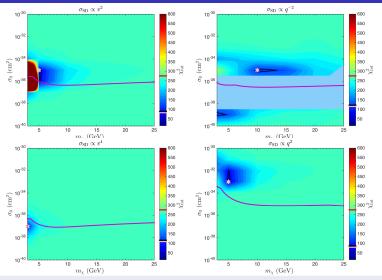
Disagreement between photospheric analyses and Helioseismology

- Surface Helium Abundance
- Sound Speed Profile
- Convection Zone Depth
- Neutrino Fluxes

Model	χ^2
SSM	276
$\sigma_{ m SI},q^2$	31

Arxiv:1504.04378, 1605.06502

Motivations


Solar Abundance Problem and Energy Transport in the Sun

- ullet Best fit points usually at low m_χ
 - To improve agreement one needs to affect energy transport
 - Energy transport con be efficient only for $1 GeV \lesssim m_\chi \lesssim 10 GeV$
- Evaporation effect usually neglected, but very important below $m_\chi \sim 4 GeV$
 - Best fit points at low DM mass are more like to survive DD constraints
- Usually feature also large cross sections
 - Most best-fit points are excluded by DD, but some regions for SD are still allowed
 - Regions affected by Evaporation may produce new best-fit points at low DM mass and large cross sections, in regions still allowed by DD

Motivations

Implementing Evaporation in...

Arxiv:1504.04378, 1605.06502

- Introduction and Motivations
 - Dark Matter in the Sun
 - Sound speed profile in the Sun

- Our Work
 - Multiple Scattering
 - Evaporation

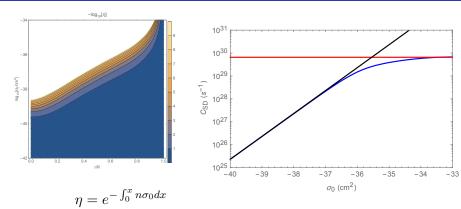
Our Work

Multiple Scattering

 The probability of absorption/interaction of a flux of particles travelling in a medium is given by

$$\frac{dN}{dx} = -n(x)\sigma_0 N(x) \to N = N_0 e^{-\int_0^x n\sigma_0 dx}$$

So the interaction rate is


$$R \sim \int dV N(x) n(x) \sigma_0 v_r = \int dV N_0 e^{-\int_0^x n\sigma_0 dx} n(x) \sigma_0 v_r$$

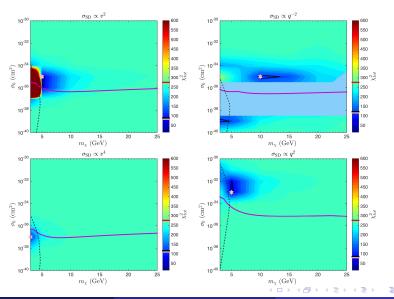
• Usual assumption: optically thin: $e^{-\int_0^x n\sigma_0 dx} \sim 1$

$$R \sim \int dV N_0 n(x) \sigma_0 v_r$$

Our Work

Multiple Scattering

This can be relevant for velocity-suppressed cross sections that can get to the optically thick regime while satisfying DD bounds

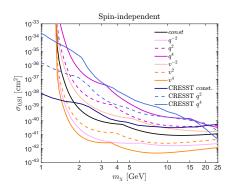

- Introduction and Motivations
 - Dark Matter in the Sun
 - Sound speed profile in the Sun
- Our Work
 - Multiple Scattering
 - Evaporation

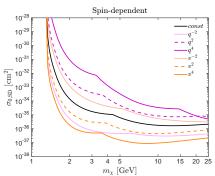
Our Work Evaporation

- Formalism similar to Capture rate calculation
- Needs more assumptions
 - DM space and velocity distribution in the Sun: Isothermal + LTE
 - Relative weight isothermal/LTE (numerical simulations: Kundsen transition)
- More computationally intensive
 - For Capture, one can make the approximation $T_N=0$ (nucleon temperature has negligible effects on C)
 - ullet Evaporation depends dominantly on T_N
 - Capture: 1D/2D integrals of smooth functions
 - ullet Evaporation: 5D integrals of very peaked functions

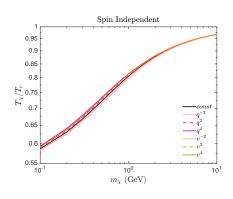
Our Work

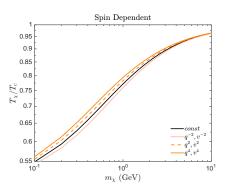
Results (SD)

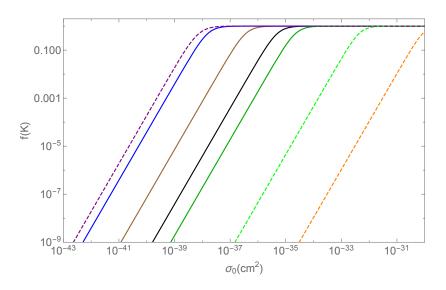

Summary


- DM in the Sun adds up to typical Direct/Indirect/Collider Search
- Important effects that are usually neglected
 - Multiple Scattering and transition to saturation for Capture
 - Evaporation for low DM masses
 - Velocity/momentum suppressed cross sections
- Interesting possibility
 - Better agreement between Solar Models and Helioseismology due to DM
- SD results show some regions of parameter space need refined analysis with evaporation effects included
- SI results being generated now, paper out in a few weeks

Backup Slides


Backup Slides


DD constrains



DM Temperature

Kundsen Transition

