Exploring a stochastic background of gravitational waves with LIGO

Letizia Sammut
for the LIGO Scientific Collaboration and the Virgo Collaboration

28 November 2016
13th International Symposium on Cosmology and Particle Astrophysics (CosPA 2016)
Stochastic GW Background

superposition of signals too weak or numerous to be resolved individually

Cosmological:
- Vacuum fluctuation
- inflationary models
- phase transitions and cosmic strings
- String cosmology

Astrophysical:
- compact binary coalescences
- core-collapse supernovae
- rotating neutron stars
Energy density spectrum

$$\Omega_{GW}(f) \equiv \frac{f}{\rho_c} \frac{d\rho_{GW}}{df}$$

GW energy density contained in the frequency range f and $f + df$

Critical energy density to close the universe
$$\rho_c = \frac{3c^2H_0^2}{8\pi G}$$

Theoretical models of stochastic backgrounds in the LIGO band are characterized by a power-law spectrum. We can therefore assume:

$$\Omega(f, \Phi) = \Omega_\alpha(\Phi) \left(\frac{f}{f_{ref}} \right)'^\alpha, \quad \Omega_\alpha(\Phi) = \frac{2\pi^2}{3H_0^2} f_{ref}^3 P(\Phi)$$

Spectral index

- $\alpha = 0$ constant energy density, representative of many cosmological models
- $\alpha = 3$ constant strain, characteristic of many astrophysical models
- $\alpha = 2/3$ background dominated by compact binary (eg BBH) inspirals
Detection strategy

- Cross correlate data stream from multiple detectors over extended observation times T
 - look for (correlated) GW background signal
- Signal contribution grows linearly with T, noise contribution grows like \sqrt{T}, hence $\text{SNR} \propto \sqrt{T}$
 - improves sensitivity, assuming uncorrelated detector noise

\[
D \approx 3000 \text{ km}
\]
\[
\frac{D}{c} \approx 10 \text{ ms}
\]

\[
\text{SNR} = \frac{3H_0^2}{10\pi^2} \sqrt{2T} \left[\int_0^\infty df \sum_{i=1}^n \sum_{j>i} \frac{\gamma^2_{ij}(f)\Omega_{GW}^2(f)}{f^6 P_i(f) P_j(f)} \right]^{1/2}
\]
• First observing run of Advanced LIGO (O1)
 – 4 months of data from September 18, 2015 to January 12, 2016
• Search for GW stochastic background recently finalised
 (no detection)
• Confirmed detections of 2 significant black hole merger events
 (+ one candidate)
O1 Detections

\[D \approx 3000 \text{ km} \]
\[\frac{D}{c} \approx 10 \text{ ms} \]

Abbott, et al., PRX, 6, 041015 (2016)
Implications

\[D \approx 3000 \text{ km} \]
\[\frac{D}{c} \approx 10 \text{ ms} \]

CMB analogy

https://map.gsfc.nasa.gov/media/060913/index.html
CMB analogy

https://map.gsfc.nasa.gov/media/060913/index.html
Assumes background is:
• isotropic
• unpolarised
• Stationary
• Gaussian
• and well represented by a power-law

No significant signal detected.
Isotropic Search

<table>
<thead>
<tr>
<th>Spectral index α</th>
<th>Frequency band with 99% sensitivity</th>
<th>Amplitude Ω_{α}</th>
<th>95% CL upper limit</th>
<th>Previous limits [33]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20 − 85.8 Hz</td>
<td>$(4.4 \pm 5.9) \times 10^{-8}$</td>
<td>1.7×10^{-7}</td>
<td>5.6×10^{-6}</td>
</tr>
<tr>
<td>2/3</td>
<td>20 − 98.2 Hz</td>
<td>$(3.5 \pm 4.4) \times 10^{-8}$</td>
<td>1.3×10^{-7}</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>20 − 305 Hz</td>
<td>$(3.7 \pm 6.5) \times 10^{-9}$</td>
<td>1.7×10^{-8}</td>
<td>7.6×10^{-8}</td>
</tr>
</tbody>
</table>
Arbitrary angular distribution

- Spherical harmonic decomposition looks for point sources
- No significant signal detected
- Upper limit maps of fractional energy density per solid angle $[\Omega \text{ sr}^{-1}]$

\[
\alpha = 0 \quad \alpha = 2/3 \quad \alpha = 3
\]
Point sources

- Radiometer search optimised for point sources
- No significant signal detected
- Upper limit maps of energy flux [erg cm2 s$^{-1}$ Hz$^{-1}$]

\[\alpha = 0 \quad \alpha = 2/3 \quad \alpha = 3 \]
Interactive maps

Mapping the Gravitational Wave Stochastic Background
Observing Run 1 (GPS 1126823617-1136849617, 20-500 Hz)

https://ldas-jobs.ligo.caltech.edu/~will.campbell/
Angular power spectra (SHD)

- Upper limits on GW background anisotropy

\[\hat{C}_l = \frac{1}{2l+1} \sum_m \left[|\hat{P}_{lm}|^2 - (\Gamma^{-1}_R)_{lm,lm} \right] \]
Conclusions

• SGWB searches can constrain important cosmological and astrophysical background models
 – probe physics at energy scales inaccessible by other means
 – constrain models of conjectural objects such as cosmic strings

• More detectors with better sensitivity will continue to improve the effectiveness of our searches

• Reasonable chance of detecting binary black hole background as advanced detectors reach design sensitivity
THANK YOU