DYNAMICAL BRANE BACKGROUNDS

Kunihito Uzawa

[arXiv:1510.01496 [hep-th]]
[arXiv:1603.01948 [hep-th]]
1 Introduction

❖ String theory:

♦ This is the only viable unified fundamental theories at present.

♣ String theory contains p-branes as well as strings.
What is “p-brane”?

★ Classical membrane solution of Einstein equation

\[X^1, X^2, \ldots, X^p \]

- This is extended in \(p \) direction.
- \(p \)-brane has \(p \) spacelike translational Killing vectors.
An innumerable number of static brane solutions have been discovered so far.

But ...

Cosmological brane solutions may also exist!

Dynamical brane background
“Dynamical” means time-dependent.

Dynamical brane may be related to

- brane collision
 (Gibbons & Lu & Pope, Phys.Rev.Lett. 94 (2005) 131602)

- cosmic Big-Bang of our universe

- black hole in expanding universe
 (Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051)
Outline my talk

* The property of dynamical brane

* Singularities and cosmic censorship

* Summary and comments
[2] Property of dynamical brane solutions:
★ Cosmology:
(Binetruy, Sasaki, Uzawa, Phys.Rev.D80:026001,2009)

We assume an isotropic and homogeneous three space in the four-dimensional spacetime.

Note that the time dependence in the metric comes from only one brane even if we consider several branes.

Solutions in the original higher-dimensional theory (10D or 11D).
Dynamical solution of D- and M-brane system

\[
\begin{align*}
 ds^2 &= h^{-(D-p-3)/(D-2)} \eta_{\mu\nu} dx^\mu dx^\nu + h^{(p+1)/(D-2)} (dr^2 + r^2 d\Omega_{D-p-2}^2), \\
 h(t, r) &= c_1 t + c_2 + M r^{-D+p+3}, \quad F_{p+2} = d(h^{-1}) \wedge dt \wedge dx^1 \wedge \cdots \wedge dx^p, \\
 e^{\phi} &= h^{c/2}, \quad c^2 = 4 - 2(p+1)(D-p-3)(D-2)^{-1}
\end{align*}
\]

- 10-dim D3-brane solution

Kasner solution

\[
\begin{align*}
 r \to \infty,
 ds^2 &= (c_1 t + c_2)^{-1/2} \eta_{\mu\nu} dx^\mu dx^\nu + (c_1 t + c_2)^{1/2} (dr^2 + r^2 d\Omega_5^2)
\end{align*}
\]

- AdS$_5 \times $S5

\[
\begin{align*}
 r \to 0,
 ds^2 &= \left(\frac{r}{M}\right)^2 \eta_{\mu\nu} dx^\mu dx^\nu + \left(\frac{M}{r}\right)^2 dr^2 + d\Omega_5^2
\end{align*}
\]
For each case, the scale factor of 4-dimensional universe is given by \(a(\tau) \propto \tau^\lambda \), where \(\tau \) denotes the cosmic time.

Since the three-dimensional spatial space of our universe stays in the transverse space to the brane, \(D \)-dimensional theory gives the fastest expansion of our universe.

The power of the scale factor becomes
\[
\lambda = \frac{p+1}{D+p-1} < 1 \quad \text{for} \quad D \geq 2.
\]
It is impossible to find the cosmological model that our universe is accelerating expansion.
Dynamical D3-brane background

In the case of no 3-form, the 10-dim metric becomes

\[ds^2 = h^{-1/2} ds^2(\mathbb{E}^3, 1) + h^{1/2} \left[dr^2 + r^2 ds^2(Z_5) \right], \]

\[h(x, r) = \left[h_0(x) + \frac{L^4}{r^4} \right] \]

For static background, AdS$_5 \times$S$_5$, the background has the full supersymmetry.
- Solution for dynamical background
 (H. Kodama & K. Uzawa, JHEP 0507:061,2005)

\[\partial_\mu h_0 \gamma^\mu \varepsilon = 0, \quad -i \gamma^0 \gamma^1 \gamma^2 \gamma^3 \varepsilon = \varepsilon \]

(i) Induced effective mass for the spinor field

\[\sim (Dh_0)^2 / h^2 \]

(ii) This mass scale diverges at the naked singularity where the function h vanishes.
(iii) the degree of supersymmetry breaking increases as the universe approaches the singularity.

(iv) In the region with a large warp factor, the SUSY breaking becomes negligible.
Singularity in dynamical brane

It is of great significance to understand the cosmological backgrounds profoundly.

There is a naked singularity in the dynamical brane background due to ...

(i) the divergence of non-trivial dilaton
 (This also appears in the static brane).

(ii) the time-dependence in the theory.

Question

Does the smooth initial data in the dynamical brane background evolve into the naked singularity?
Cosmic censorship conjecture
(Penrose, "Singularities and time-asymmetry", (1979) 617–629)

- **Weak:**
 "Singularities have to be hidden by the event horizon of a black hole."

- **Strong:**
 "For smooth initial data with suitable matter systems, the maximal Cauchy development is not extendible."
Our results:

The cosmic censorship is violated in dynamical M-brane background.

This is similar to the result which has been obtained in Einstein–Maxwell–dilaton theory (with cosmological constant).

Logic:

- We can set a regular and smooth initial data for the M5-brane.
- These initial data in the far past evolve into the curvature singularity.
- The cosmic censorship is violated.
M5-brane

⇒ matter (bosonic): gravity, 4-form field strength

<table>
<thead>
<tr>
<th>M5 (x^N)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>t, (x^1), (x^2), (x^3), (x^4), (x^5), (r), (y^1), (y^2), (y^3), (y^4)</td>
<td></td>
</tr>
</tbody>
</table>
Dynamical M5-brane background

(Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051)

\[ds^2 = \left(a t + b + \frac{M}{r^3} \right)^{-1/3} \eta_{\mu\nu} dx^\mu dx^\nu \]

\[+ \left(a t + b + \frac{M}{r^3} \right)^{2/3} \left(dr^2 + r^2 d\Omega_{(4)} \right) \]

5-dim transverse space to brane

\[\left(a t + b + \frac{M}{r^3} \right) = 0 : \text{ curvature singularity} \]
Geodesic equation:

\[\frac{d^2 r}{ds^2} + \Gamma^r_{MN} \frac{dx^M}{ds} \frac{dx^N}{ds} = 0 \]

We can set a regular and smooth initial data for the M5-brane.

The asymptotic behavior of the null curves depends crucially on whether \(r \) is inside or outside the Cauchy horizon.
(a) Radial null geodesic for $M5$-brane:

The regular initial data outside the Cauchy horizon evolves into a naked singularity at $h=0$.

\[h = \left(-t + \frac{1}{r^3} \right) \]
(b) Radial null geodesic for M5-brane:

The null geodesic inside the Cauchy horizon never hits the timelike singularity.

\[h = \left(-t + \frac{1}{r^3} \right) \]
$\dot{r} = 0$

Cauchy horizon: $H^+(S)$

Null geodesic: Case (a)

S: Initial Surface

Null geodesic: Case (b)

$$h = -t + r^{-3} = 0$$

$t = \text{constant}$

$r = \text{constant}$

$r = 0$

$\left(\begin{array}{c} t = -\infty \\ r = \infty \end{array} \right)$
Summary and comments

(1) The dynamical brane background describes the new SUSY solution.

(2) The solutions of field equations cannot give a realistic expansion law. This means that we have to consider additional matter in order to get a realistic expanding universe.

(3) For dynamical M5-brane, we can set smooth initial data evolving into a timelike curvature singularity.