Galactic Positrons

Roland Crocker ANU

- This talk: focusing on low energy, trans-relativistic positrons evidenced by annihilation radiation from the Inner Galaxy
- ~5 x 10⁴³ e+/s annihilate in the Galaxy (Siegert et al. 2016)

- This talk: focusing on low energy, trans-relativistic positrons evidenced by annihilation radiation from the Inner Galaxy
- ~5 x 10⁴³ e+/s annihilate in the Galaxy (Siegert et al. 2016)

...where do they come from?

slide credit: Thomas Siegert

Positron Annihilation Observations

Diffuse, Galactic positron annihilation signal detected for more than 40 years, first with balloon-borne, and more recently satellite (COMPTEL, INTEGRAL) experiments

Positron Annihilation Observations

 Depending on ISM conditions, positrons annihilate in flight or form a positronium atom and then annihilate Formation of Positronium Atom (Ps):

→ Triplet state (S=1): parallel spins

"Ortho-Positronium" o-Ps

Lifetime: $\tau=1.4\times10^{-7}$ s

3γ: continuous spectrum

→ Singlet state (S=0) antiparallel spins

"Para-Positronium" p-Ps

Lifetime: $\tau = 1.3 \times 10^{-10} \text{ s}$

2γ: monoenergetic gamma-ray line (511 keV)

Annihilation in Flight (AiF):

→ Direct annihilation with $E_{kin}(e^{\pm}) \ge 0$:

 $E_{kin}(e^{+}) = E_{kin}(e^{-}) \approx 0$: **511 keV line**

 $E_{kin}(e^+) \neq /= E_{kin}(e^-) > 0$: continuous spectrum

 10^{-8}

Energy [keV]

Positron Annihilation Observations

 Continuum gamma-rays below 511 keV and 511 keV line widths inform us that most (~100%) of positrons annihilate through the formation of positronium

 Positron annihilation is tracing the moderately warm and partly ionised interstellar gas:

T ≈ **8000 K**, n_H ≈ **0.1-0.3**, x_{ion} ≈ **0.05-0.2** (Siegert et al. 2016)

Positron Annihilation Observations

- Central mystery: very large positron luminosity ratio bulge:disk...not seen at any other wavelength
- Historically: bulge/disk positron luminosity:

 $B/D \sim 1.4$

- >> Star Formation Rate[bulge]/SFR[disk] ~ 0.1
- $> Mass[bulge]/Mass[disk] \simeq 0.4$

- Large B/D prompted theories of "special source" in the inner Galaxy:
 - Super-Massive Black Hole?
 - need process to transport positrons from nucleus out to scale of bulge; diffusion does not work (Martin et al. 2012)
 - Dark Matter (Boehm et al. 2004)?
 - difficult given positron injection energy constraint from continuum gamma-rays (Aharonian & Atoyan 1983; Becom, Bell & Bertone 2005; Beacom & Yuksel 2006): T_{e+} ≤ 3 MeV
 - same constraint tends to rule out compact sources like pulsars
 - on the other hand, perfectly consistent with e^+ from β^+ decay of radionuclides synthesised in stars and/or supernovae...

Large B/D prompted theories of "special source" in the inno

need process to transport position scale of bulge; diffusion de that the annihilation distribution scale of bulge; diffusion de that the annihilation distribution of the the source distribution.
 Dark Matter (Boehr imply the position source the position of the

other hand, perfectly consistent with e^+ from eta^+ decay ر radionuclides synthesised in stars and/or supernovae...

- much more low surface brightness emission from disk detected
- B/D $\sim 1.4 \rightarrow B/D \simeq 0.4$
- newly reduced B/D makes idea for "special" positron source in the GC/bulge less compelling
- but now comes the difficult part: how to explain the "extra" disk positrons?

- much more low surface brightness emission from disk detected
- B/D $\sim 1.4 \rightarrow B/D \simeq 0.4$
- newly reduced B/D makes idea for "special" positron source in the GC/bulge less compelling
- but now comes the difficult part: how to explain the "extra" disk positrons?
- $B/D \simeq 0.4 \simeq Mass[bulge]/Mass[disk]$

...means that positron source connected to OLD STARS could work

• Disk size: 140⁺²⁵₋₁₀ deg FWHM longitude; 25⁺⁶₋₄ deg FWHM latitude

- Detection (>5σ) of separate positron source in nucleus
- Poor angular resolution of INTEGRAL SPI (~3°)
 means that we do not know whether this source
 is
 - truly the super-massive black hole or
 - the Nuclear Bulge/Central Molecular Zone region of ~300 pc width surrounding the SMBH

- Note that a stellar positron source connected to OLD stars could explain entirety of gross, Galactic positron injection morphology because
 - $B/D \simeq (0.42 \pm 0.09)$
 - ~ Mass[bulge]/Mass[disk]
 - NB/B \simeq (0.083 \pm 0.021)
 - $\simeq Mass[nuclear bulge]/Mass[bulge] \simeq 0.09$

- Note that a stellar positron source connected to OLD stars could explain entirety of gross, Galactic positron injection morphology because
 - $B/D \simeq (0.42 \pm 0.09)$
 - ~ Mass[bulge]/Mass[disk]
 - NB/B \simeq (0.083 \pm 0.021)
 - $\simeq Mass[nuclear bulge]/Mass[bulge] \simeq 0.09$

...but exactly how old would stellar positron sources need to be?

More Quantitatively: Delay Time Distribution

$$R_X[t] = \nu_X \int_0^t DTD[t-t'] \; SFH[t'] \; dt',$$
 rate of transient event 'X' star formation history

$$DTD[t] \propto rac{(t/t_p)^{lpha}}{(t/t_p)^{lpha-s}+1}$$
 Childress et al. 2015

What else do we know?

- Positron injection energy constraint: perfectly consistent with e^+ from β^+ decay of radionuclides.
- Astrophysically-relevant radionuclides: ²⁶AI, ⁵⁶Ni, ⁴⁴Ti
- ²⁶AI: associated 1.8 MeV γ-ray line; line flux normalises ²⁶AI positrons to ~10% of MW positron luminosity; wrong morphology

What else do we know?

- e^+ from β^+ decay of
- Positron injection er $^{26}{
 m Al}
 ightarrow ^{26}{
 m Mg} + e^+$ λ = 717,000 yr

- Astrophysically-rele $^{56}\mathrm{Ni} \rightarrow ^{56}\mathrm{Co} \rightarrow ^{56}\mathrm{Fe} + \mathrm{e}^{+}$ $\lambda = 80 d$
- **26AI**: associated 1.8 positrons to ~10% c morphology

$$^{44}\mathrm{Ti} \rightarrow ^{44}\mathrm{Sc} \rightarrow ^{44}\mathrm{Ca} + \mathrm{e}^{+}$$

 $\lambda = 60 \text{ yr}$

What else do we know?

- Positron injection energy constraint: perfectly consistent with e^+ from β^+ decay of radionuclides.
- Astrophysically-relevant radionuclides: ²⁶AI, ⁵⁶Ni, ⁴⁴Ti
- ²⁶AI: associated 1.8 MeV γ-ray line; line flux normalises ²⁶AI positrons to ~10% of MW positron luminosity; wrong morphology

- Positron injection energy constraint: perfectly consistent with e^+ from β^+ decay of radionuclides.
- Astrophysically-relevant radionuclides: ²⁶AI, ⁵⁶Ni, ⁴⁴Ti
- ²⁶AI: associated 1.8 MeV γ-ray line; line flux normalises ²⁶AI positrons to ~10% of MW positron luminosity; wrong morphology
 Plüschke et al. 2011

- Positron injection energy constraint: perfectly consistent with e^+ from β^+ decay of radionuclides.
- Astrophysically-relevant radionuclides: ²⁶AI, ⁵⁶Ni, ⁴⁴Ti
- ²⁶AI: associated 1.8 MeV γ-ray line; line flux normalises ²⁶AI positrons to ~10% of MW positron luminosity; wrong morphology

- Positron injection energy constraint: perfectly consistent with e^+ from β^+ decay of radionuclides.
- Astrophysically-relevant radionuclides: ²⁶AI, ⁵⁶Ni, ⁴⁴Ti
- 26 AI: associated 1.8 MeV γ -ray line; line flux normalises 26 AI positrons to ~10% of MW positron luminosity; wrong morphology
- ⁵⁶Ni: traditionally considered most favourable candidate as copiously produced in Type Ia supernovae BUT ...

- Positron injection energy constraint: perfectly consistent with e^+ from β^+ decay of radionuclides.
- Astrophysically-relevant radionuclides: ²⁶AI, ⁵⁶Ni, ⁴⁴Ti
- 26 AI: associated 1.8 MeV γ -ray line; line flux normalises 26 AI positrons to ~10% of MW positron luminosity; wrong morphology
- ⁵⁶Ni: traditionally considered most favourable candidate as copiously produced in Type Ia supernovae BUT ...
- SNIa happen at too short a delay time to explain morphology

Another problem for ⁵⁶Ni positrons from SNIa

- ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe ~80 day decay time: positron trapping in SN ejecta
- Late-time pseudo-bolometric light curves of SNIa indicate complete trapping: vast majority of positrons from SNIa ⁵⁶Ni never reach the ISM

...Trapping not a problem for ⁴⁴Ti:

- ⁴⁴Ti → ⁴⁴Sc → ⁴⁴Ca ~70 YEAR decay time: supernova positrons can reach ISM
- BUT also γ-ray and X-ray line associated with this decay chain and *measured* total luminosity of ⁴⁴Ti sky lines too small to account for Galactic positron injection rate
- Moreover, daughter nucleus ⁴⁴Ca measured in solar system material; inferred production rate too small to account for Galactic positron injection rate

• NO! What is required to evade these problems is that:

- NO! What is required to evade these problems is that:
 - ⁴⁴Ti-producing events are more common today than in the period leading up to the formation of the solar system 4.55 Gyr ago; naturally occurs if the stellar sources of ⁴⁴Ti have a ~6 Gyr delay time

- NO! What is required to evade these problems is that:
 - ⁴⁴Ti-producing events are more common today than in the period leading up to the formation of the solar system 4.55 Gyr ago; naturally occurs if the stellar sources of ⁴⁴Ti have a ~6 Gyr delay time
 - the events are rare, separated by a typical

 $t_{wait} > few x t_{decay} \sim 300 year$

(so we do not expect to see strong 44Ti lines in sky)

- NO! What is required to evade these problems is that:
 - ⁴⁴Ti-producing events are more common today than in the period leading up to the formation of the solar system 4.55 Gyr ago; naturally occurs if the stellar sources of ⁴⁴Ti have a ~6 Gyr delay time
 - the events are rare, separated by a typical

```
t_{wait} > few x t_{decay} \sim 300 year
```

(so we do not expect to see strong 44Ti lines in sky)

...but must produce large mass of ⁴⁴Ti, ~0.03 M_☉

A Galactic ⁴⁴Ti source that...

- ...occurs every ≥300 years
- ...synthesises ≥0.03 M_☉ of ⁴⁴Ti
- ...happens at a delay time of ~6 Gyr post star formation

would

- explain the absolute positron luminosity of the Galaxy
- explain the ⁴⁴Ca abundance in pre-solar material
- explain the bulge to disk positron luminosity ratio
- explain the nuclear bulge to bulge positron luminosity ratio

What could such a source be?

- Relatively large ⁴⁴Ti mass requires a HELIUM DETONATION; requires assembly large He mass at correct density (~10⁶-10⁷ g/cm³)
- Mergers of low mass white dwarf binaries can achieve this
- Specifically: CO-WD/He-WD mergers occur at ~3-6 Gyr in our binary population synthesis model (StarTrack; Belczynski+); this is the time scale required by positron phenomenology

COWD-HeWD merger leading to He detonation

HeWD

system

slide credit: Fiona Panther

equilibrium

What are these events?

- Our answer: 'SN1991bg-like' supernovae
- These are sub-luminous Type Ia (thermonuclear) supernovae that occur in old stellar populations
- 30% of SNIa in elliptical galaxies
- 15% of SNIa in all galaxies
- Direct, spectroscopic evidence they synthesise Ti
- Frequency seems to be increasing with cosmic time as required by our analysis

What are these events?

- Our answer: 'SN1991bg-like' supernovae
- These are sub-luminous Type Ia (thermonuclear) supernovae that occur in old stellar populations
- 30% of SNIa in elliptical galaxical
- 15% of SNIa in all galaxic.
- Direct, spectroscor in the dence they synthesise Ti
- Frequency seen so be increasing with cosmic time as required by our analysis

Speculation: Connection to Galactic Centre Excess?

- The bulge positron annihilation signal emerges from the SAME REGION and implies the SAME ENERGETICS as the 'GC Excess' ~GeV γ-ray signal... are they connected?
- Maybe:
 - the GC Excess spectrum resembles that from pulsars or millisecond pulsars
 - Binary WD systems can produce millisecond pulsars directly through 'Accretion Induced Collapse' of ONeMg WDs accreting from its companion

Summary

- The Galactic disk is a brighter positron source than previously reckoned; B/D positron luminosity ~ B/D stellar mass
- The nucleus has now been detected as a separate positron source
- Generically, this phenomenology can be explained with a positron source connected to old stars in the Galaxy
- Our claim: a single type of transient event SN1991bg-like supernovae – can supply the requisite number of positrons in the correct distribution to explain the origin of most Galactic antimatter
- This scenario is multiply constrained, and also suffices to explain the anomalous abundance of ⁴⁴Ca, the decay product of the ⁴⁴Ti that births the Galactic positrons, in pre-solar grains

Exotic/Remarkable Non-Thermal Phenomena of the GC/Inner Galaxy:

- (Quasi) point-like GeV and TeV γ-ray source coincident with Sgr A* (= radio source coincident with SMBH)
- Extended (few degrees) GeV & TeV emission
- Non-Thermal Radio (and X-ray) Filaments
- 130 GeV 'line'
- ~GeV γ-ray spectral bump 'GC Excess'
- 511 keV positron annihilation line
- Non-thermal microwave 'haze'
- Fermi Bubbles

Exotic/Remarkable Non-Thermal Phenomena of the GC/Inner Galaxv

- aeV 'line'

 aeV 'line'

 aeV 'line'

 aeV γ-rane of these matter signature

 aeV γ-rane of the signature

 aeV γ-rane o

General Point

While the GC is a logical place to look for signs of dark matter, astrophysical uncertainties attached to it are large ... it is a very different environment to the local disk