Invisible Higgs decays, SUSY searches and BSM Higgs at the LHC

Chia Ming, Kuo
National Central University, Taiwan
DM and LHC

- There is strong evidence for the existence of DM
- DM outnumbers visible matter: 27% vs 5%
 - detect through gravitational effects
- DM: one of the important unsolved problems of the Universe

- one of the important physics programs after the discovery of the Higgs boson at the LHC
- At the LHC, we try to create it ourselves!
- Complementary to other DM experiments
- The searches of DM at the LHC can be more sensitive in some cases
 - if DM is light or if interactions are spin-dependent
LHC and DM signatures

- **DM signatures:**
 - mono-X
 - mono-Z, mono-H, mono-γ,
 - dijet
 - long-lived particles
 - invisible Higgs decays
 - SUSY
 - BSM Higgs

- higher \sqrt{s} gives better sensitivity to BSM physics in the high mass region

See the talk by Millie McDonald
Higgs couplings: currently allowed BSM BR

ATLAS + CMS: JHEP 06 (2016) 045
5/fb @ 7 TeV + 20/fb @ 8 TeV

| Parameter value | \(\kappa_Z \) | \(\kappa_W \) | \(\kappa_t \) | \(|l_{\kappa_l}| \) | \(|l_{\kappa_\ell}| \) | \(|l_{\kappa_{\nu}}| \) | \(|l_{\kappa_{\mu}}| \) | \(B_{BSM} \) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Run 1 LHC | ATLAS | CMS | ATLAS+CMS | ATLAS | CMS | ATLAS | CMS | ATLAS+CMS |
| ±1σ | ±2σ | ±1σ | ±2σ | ±1σ | ±2σ | ±1σ | ±2σ | ±1σ |

potential invisible or undetectable \(B_{BSM} < 34\% \) (39\% exp.) @ 95\% C.L.
→ still allow ample space to look for BSM Higgs decays
Invisible Higgs decay

- a number of BSM models allow for this
 - decays to neutralinos in SUSY
 - graviscalars in models with extra spatial dimensions
 - interactions between the Higgs and DM
 - complementary to direct detection
 - DM mass < $m_H/2$

http://rejuvenatte.blogspot.tw
qqH

- most sensitive mode
- VBF topology
- reject extra leptons
\(Z(\rightarrow ll)H \)

- smaller cross section than VBF
- clean final state with low background
- select good Z bosons back-to-back with MET

\[m_T = \sqrt{2 p_T^{ll} E_T^{miss} [1 - \cos \Delta \phi(ll, \vec{p}_T^{miss})]} \]
$V(\rightarrow qq)H$

- large background but relatively larger signal contribution
- ATLAS : 2 & 3 jets & b-tags (leading $p_T > 45$ GeV)
- CMS : large radius jet ($R = 0.8$), $p_T > 200/250$ GeV for 8/13 TeV
 - rely on jet substructure techniques
Monojet + H

- events failing V(jj)-tagging but satisfying jet $p_T > 150/100$ GeV ($R = 0.5/0.4$) for 8/13 TeV are included
- large background
- improve V(jj)H sensitivity by \sim15% after adding this mode

Combination of V(qq)H and gH
Combined $H \rightarrow \text{invisible limits}$

- No significant deviations from SM expectation are observed in any search mode
- ATLAS: Run-1 dataset
- CMS: Run-1 + 2015 dataset

Direct search increases the sensitivity beyond indirect constraints

<table>
<thead>
<tr>
<th>ATLAS</th>
<th>VBF H</th>
<th>Z(\text{ll})H</th>
<th>V(qq)H</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.</td>
<td>0.31</td>
<td>0.62</td>
<td>0.86</td>
<td>0.27</td>
</tr>
<tr>
<td>Obs.</td>
<td>0.28</td>
<td>0.75</td>
<td>0.78</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Comparison to direct DM detection

- Direct detection: sensitive to elastic interactions between DM and nuclei via H
 - nuclear recoil signatures → interpreted in terms of DM-nucleon interaction cross section
- the invisible Higgs decay width is translated into the spin-independent DM-nucleon elastic cross section if DM mass < \(m_H/2 \)
- LHC results: complementary phase space

ATLAS JHEP 11 (2015) 206
CMS HIG-16-016
Outlook of $H \rightarrow \text{invisible}$

- SM BR($H \rightarrow \text{inv.}$) = 0.001

S1: all systematic uncertainties are fixed to 2015 values

S2: experimental systematic uncertainties decrease with L and theoretical ones are scaled by 1/2

→ improved by a factor of 2 by the end of 2018 and 5 at HL-LHC
SUSY searches

• Solution to the hierarchy problem

• Unification of gauge couplings

• Dark Matter in the Universe
 • LSP : stable, electrically neutral, interact weakly with the SM particles
 • may be an excellent DM candidate

• the known fundamental particles have superparticle partners : quark → squark, gluon → gluino
Selected Run 1 SUSY results

- A large number of searches were done with Run-1 data
- No significant signals consistent with SUSY have yet been observed
 - constrain the allowed SUSY model space

CMS summary plots: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SUSYSMSSummaryPlots8TeV
pMSSM interpretations

- more than 20 EWK SUSY results → the impact on the constraints on DM
- interpreted with 19 independent weak-scale parameters (phenomenological MSSM)
 - considered model: EWKH → described by 5 parameters
 - the results can be assessed in a relatively straightforward way
- probe regions of the parameter space that are difficult to reach with direct-detection dark matter experiments
CMS results from Run-1 started to test the most interesting region with LSP masses below about 400-500 GeV

Neutralino mass is strongly correlated with the gluino and LCSP mass

Neutralino mass is correlated most strongly with the cross section
 • a light neutralino is disfavored
SUSY production cross section : 8 vs 13 TeV

- **Cross section ratio (13TeV/8TeV)**
 - gluino for mass = 1.4 TeV : ~25
 - stop/sbottom for mass = 750 GeV : ~10
 - $t\bar{t}$: ~3.3 \rightarrow S/B boosts

Chia Ming, Kuo/NCU, Taiwan
\(\tilde{g} \rightarrow tt\tilde{\chi}_1^0 \)

- highly motivated decay channel due to natural SUSY scenarios
- the strongest limits is about 1.9 TeV
$\tilde{q} \to q\tilde{\chi}_1^0$

$\tilde{q} \to \tilde{q}\tilde{q}$, $\tilde{q} \to q\tilde{\chi}_1^0$

- large production cross section \rightarrow primary target for early SUSY searches
- squark masses below ~ 1.4 TeV are excluded for a massless lightest neutralino

ATLAS CONF-2016-078
CMS SUS-016-014
CMS SUS-016-015
• stop plays an important role in cancelling the dominant top loop diagram contributions to the divergence of the Higgs mass
• LHC starts having sensitivity with 0.9-1 TeV for stop
• new results from ATLAS fill in the regions unfilled in Run-1
$H \rightarrow \text{undetectable} + \gamma$

- several BSM models predict this final state
- In certain low-scale SUSY models, $H \rightarrow$ a gravitino + a neutralino or a pair of neutralinos
Heavy Long-Lived Particles

- an attempt to address the hierarchy problem
- SUSY allows for long-lived sparticles
- new results improve the previous limits from the LHC

ATLAS PLB 760 (2016) 647
CMS EXO-16-036
BSM Higgs searches

- Two-Higgs Doublet Models (2HDM)
 - simplest possible extensions of the SM
 - MSSM, axion, baryogenesis models
- five “Higgs” bosons: h, H, H⁺, H⁻, A

CMS PRD 90 (2014) 112013

Chia Ming, Kuo/NCU, Taiwan
$H^\pm \rightarrow \tau^\pm \nu_T$

- ATLAS: $pp \rightarrow H^+ t$ ($m_{H^+} > m_{top}$)
- CMS: $pp \rightarrow H^+tb$ ($m_{H^+} > m_{top}$), $pp \rightarrow H^+W^-bb$ ($m_{H^+} < m_{top}$)

$\sigma \times BR$ enhanced at large $\tan \beta$

\rightarrow large $\tan \beta$ is excluded

significantly improve the limit for high mass region

Chia Ming, Kuo/NCU, Taiwan
Di-Higgs production

ATLAS CONF-2016-049
CMS HIG-16-029

ATLAS Preliminary
\(\sqrt{s} = 13\) TeV, 13.3 fb\(^{-1}\)

CMS Preliminary
\(\sqrt{s} = 13\) TeV

SM

BSM

Chia Ming, Kuo/NCU, Taiwan
Di-Higgs production

CMS Preliminary

$L = 2.70 \text{ fb}^{-1} (13 \text{ TeV})$

- $pp \rightarrow X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$
- Spin-2 Resonance
- Bulk Graviton, $k/M_\text{Pl} = 1$

Observed 95% upper limit

Expected 95% upper limit

- $\sigma (pp \rightarrow X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma)$ (fb)
- M_X (GeV)

ATLAS Preliminary

$\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$

Obs. limit

- $\sigma (gg \rightarrow X) \times \text{BR}_{X \rightarrow hh}$ (fb)
- m_X (GeV)

At $\sqrt{s} = 13 \text{ TeV}, 13.3 \text{ fb}^{-1}$

- $\gamma\gamma$ production

- $b\bar{b}\nu\bar{\nu}$ (CMS-PAS-HIG-16-011, 2.3 fb$^{-1}$)
- $b\bar{b}t\bar{t}$ (CMS-PAS-HIG-16-029, 12.9 fb$^{-1}$)
- $b\bar{b}b\bar{b}$ (CMS-PAS-HIG-16-002, 2.3 fb$^{-1}$)
- $b\bar{b}\gamma\gamma$ (CMS-PAS-HIG-16-032, 2.7 fb$^{-1}$)

CMS Unpublished

Assumes SM Higgs BR

$\sigma (gg \rightarrow X) \times \text{BR}_{X \rightarrow hh}$ (fb)

- $m_X^{\text{spin-0}}$ (GeV)

$2.3 - 12.9 \text{ fb}^{-1} (13 \text{ TeV})$
High mass search for $\gamma\gamma$

- many extensions to the SM predict new resonances decaying into $\gamma\gamma$
- ATLAS and CMS test both of heavy scalar ($J=0$) and Randall-Sundrum (RS) graviton ($J=2$) models and different widths

Chia Ming, Kuo/NCU, Taiwan

ATLAS CONF-2016-059
CMS arXiv:1609.02507
High mass search for $Z\gamma$

- An extended SM incorporating a scalar (or pseudo scalar) decaying to two photons would imply the observation of $Z\gamma$ as well.
- ATLAS and CMS look into $Z \rightarrow ll$ and $Z \rightarrow qq$.

ATLAS PLB 764 (2017) 11
CMS arXiv:1610.02960
CMS EXO-16-035
Summary

- LHC provides alternative, complementary way to search for DM
- Rich DM search programs have been conducted at the LHC since Run-1
 - invisible Higgs decays
 - SUSY
 - BSM Higgs
- Stay tuned with new results updated with full 2016 data
• Backup
“Invisible” particles in detector

- Particles like neutrinos or DM do not leave signatures in the detector → invisible
 - cause large imbalance in the transverse plane
- Missing transverse energy (MET)
 - a powerful variable to discriminate between signal (e.g. DM) and SM background
Additional contributions to the Higgs boson width from BSM processes

\[-2 \ln \Lambda\]

\([k_Z, k_W, k_t, k_\tau, k_b, k_{g'}, B_{BSM}]\]

ATLAS and CMS
LHC Run 1

- Observed
- SM expected
\(\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0 \)
$\tilde{b} \rightarrow b\tilde{\chi}_1^0$

ATLAS EPJC (2016) 76:547
CMS SUS-16-014
CMS SUS-16-015
CMS SUS-16-016

ICHEP 2016

CMS Preliminary

13 TeV

Expected
Observed

$\tilde{b}\tilde{b}, \tilde{b} \rightarrow b\tilde{\chi}_1^0$

Bottom squark pair production, $\tilde{b}_i \rightarrow b\tilde{\chi}_1^0$

$\sqrt{s}=13$ TeV, 3.2 fb$^{-1}$
All limits at 95% CL
Best SR

Chia Ming, Kuo/NCU, Taiwan
$H^+ \rightarrow WZ$ or tb

Chia Ming, Kuo/NCU, Taiwan

ATLAS CONF-16-089
CMS HIG-16-027

β vs $\tan \beta$

Observed exclusion

Expected exclusion

$\sigma_1 \pm \sigma_2$ ±

H^+

H^+

$\sqrt{s} = 13$ TeV, 13.2 fb^{-1}
$$\Phi \rightarrow \tau \tau$$

(a) \hspace{1cm} (b) \hspace{1cm} (c)

- $g \rightarrow t, \bar{t}$
- b, \bar{b}
- h, H, A

CMS Preliminary

hMSSM scenario

- 95% CL Excluded:
 - Observed
 - Expected $\pm 1\sigma$
 - Expected $\pm 2\sigma$

95\% CL Excluded:

- Observed
- Expected $m_{h^\text{mod+}} = 125 \pm 3$ GeV
- Expected $m_{h^\text{mod+}} = 125 \pm 3$ GeV

- $\tan \beta$
- m_A (GeV)

m$_{h^\text{mod+}}$ scenario

- 95% CL Excluded:
 - Observed
 - Expected $m_{h^\text{mod+}} = 125 \pm 3$ GeV
 - Expected $m_{h^\text{mod+}} = 125 \pm 3$ GeV

- $\tan \beta$
- m_A (GeV)
High mass search for $\gamma\gamma$

\[
\begin{array}{c|c}
\tilde{k} & \text{Exclusion} \\
0.01 & 1.95 \text{ TeV, except } 1.75-1.85 \text{ TeV} \\
0.1 & 3.85 \text{ TeV} \\
0.2 & 4.45 \text{ TeV} \\
\end{array}
\]
A-funnel: dark matter annihilates through the pseudo scalar Higgs boson pole

Z-funnel: annihilation rate is proportional to higgsino fraction of the neutralino

h-funnel: neutralino annihilates through a mechanism similar to Z-funnel but involving the lightest Higgs boson instead. Annihilation rate is proportional to the higgsino fraction as well as the combined bino and wino fraction.