Mono-X, dijet, and long-lived particle searches at the LHC

Emily (Millie) McDonald, On behalf of the ATLAS and CMS Collaborations

13th International Symposium on Cosmology and Particle Astrophysics Sydney, Australia Nov. 28 - Dec. 2 2016

M. McDonald, University of Melbourne

Observational Evidence of Dark Matter

Gravitational lensing

Cluster mergers

And much more!

CMB

M. McDonald, University of Melbourne

Dark Matter Detection

Experimental evidence motivates a DM sector composed dominantly of Weakly Interacting Massive Particles (WIMPs)

→ Facilitate comparison of results in the three main DM detection avenues

The Large Hadron Collider (LHC)

A proton-proton and heavy ion collider in Geneva, Switzerland

→ Four collision points, two of which are housed within general-purpose detectors; ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid)

The Large Hadron Collider (LHC)

Dedicated proton-proton collision schedule

- → From 2010 to 2012 (Run-I), collected ~25 fb⁻¹ of data at a centre-of-mass energy (√s) of 7 and 8 TeV
- → In 2015 and 2016, moved to √s = 13 TeV (Run-II) → ~36 fb⁻¹ (ATLAS) and ~37 fb⁻¹ (CMS) of recorded data

The ATLAS and CMS Experiments

ATLAS and CMS aim to detect a wide range of possible New Physics signals

- → Particles reconstructed with information from detector sub-components
- → Efficient identification of particle type, energy, and momentum

→ Invisible particles escape detection but present as a momentum imbalance in the transverse plane; Missing Transverse Energy, $E_{\rm T}^{\rm miss}$

$$E_{\rm T}^{\rm miss} = \sqrt{(E_x^{\rm miss})^2 + (E_y^{\rm miss})^2}$$
$$\phi^{\rm miss} = \arctan(E_x^{\rm miss}, E_y^{\rm miss})$$

Dark Matter Collider Detection Channels

<u>Mono-X Signal</u>

 \rightarrow

WIMP DM doesn't interact with detector

Require a SM particle, X, in the FS

Search strategy: look for jet(s), W/Z/Higgs, or γ plus large $E_{\rm T}^{\rm miss}$

q

0000000000

DM

DM

Theoretical interpretation of results

Run-I searches interpreted with **Effective Field Theories (EFTs)**

- → Free parameters: m_{DM} , and $M_* = M/\sqrt{(g_q q_\chi)}$
- → Valid when M >> Q
- → Heavily restricted range of validity at the LHC

Run-II searches focus on Simplified Models of DM (SiMs)

- Five parameters: M, Γ , m_{DM} , g_q and q_χ
- → Benchmark set of SiMs/parameters agreed upon at joint theory-experimental LHC DM Forum
- → Results presented in a universal manner
- → <u>arXiv:1507.00966</u>, <u>arXiv:1603.04156</u>

This talk will focus on SiM and EFT interpretations of the most recent Run II DM searches

→ SUSY and BSM/Invisible Higgs searches covered in next talk

Mono-X Searches

ATLAS Mono-Jet Analysis

Mono-jet channel most sensitive to DM production at the LHC

Selection: At least one high- p_T jet and large E_T^{miss} \rightarrow Jet clustered with anti- k_T algorithm with R = 0.4

Dominant Background: $Z(\rightarrow vv) + jets$

→ contribution normalised in control regions for several $E_{\rm T}^{\rm miss}$ bins, using a global fit

Model(s): Leptophobic Z' mediator with axial-vector couplings

M. McDonald, University of Melbourne

ATLAS Mono-W/Z (hadronic) Analysis

Selection: At least one large-radius jet plus large $E_{\rm T}^{\rm miss}$

- → Hadronic decay of Lorentz-boosted W/Z boson yields merged 'wide radius' jet
- → Jet reconstructed with anti- k_T algorithm with R = 0.8
- → Distinguish W/Z jets by exploiting jet mass and substructure variables

Dominant Background: W/Z + jets

ATLAS Mono-W/Z (hadronic) Analysis

Model(s)

- 1. EFT ZZ $\chi\chi$ model: limit on suppression scale, M_{*}, with respect to m_{DM}
- 2. Vector-mediator simplified model: limit on signal strength, μ , in m_{DM} -M plane

CMS Mono-Jet and Mono-W/Z (hadronic) Analysis

Selection: At least one high $p_T R=0.4$ jet or one R=0.8 jet from boosted W/Z boson decay plus large E_T^{miss}

→ Again identify W/Z jets using jet mass and substructure

Dominant backgrounds: $Z(\rightarrow vv) + jets$, $W(\rightarrow lv) + jets$

Model(s): Heavy spin-0 and spin-1 mediators coupling to quarks and Dirac fermion DM

CMS Mono-Jet and Mono-W/Z (hadronic) Analysis

M. McDonald, University of Melbourne

ATLAS & CMS Mono-Z (leptonic) Analyses

Selection: Two opposite-charge same-flavor leptons (e or μ) with m_T close to the Z mass, plus large E_{T}^{miss}

Dominant backgrounds: $Z(\rightarrow vv)Z(\rightarrow ll)$ and WZ

Model(s): Heavy mediator with vector couplings. CMS also includes a SiM with axial-vector couplings

ATLAS & CMS Mono-Z (leptonic) Analyses

ATLAS & CMS Mono-γ Analyses

M. McDonald, University of Melbourne

ATLAS & CMS Mono-γ Analyses

M. McDonald, University of Melbourne

ATLAS & CMS Mono-Higgs(→bb) Analyses

Higgs boson ISR highly suppressed \rightarrow mono-Higgs signal provides direct probe of DM-SM coupling

→ $h \rightarrow bb$ dominant decay mode

Selection: resolved/merged b-jets plus large $E_{\rm T}^{\rm miss}$

→ Jet selection dependent on $E_{\rm T}^{\rm miss}$

Dominant background: W/Z + jets

ATLAS & CMS Mono-Higgs(→bb) Analyses

ATLAS DM Plus Top Quarks Analyses

Search for DM produced in association with top quarks

- → Complement to mono-X analyses
- → Most sensitive channel for spin-0 mediators

Selection: Large $E_{\rm T}^{\rm miss}$, cuts optimised for separate top quark decay modes

Model(s): SiMs with scalar and pseudoscalar mediators

Fully hadronic Semi-leptonic **Fully leptonic** (Oleptons) (1 lepton + jets) (2 leptons + jets) DM+tt scalar mediator, g = g = g $t\bar{t} + \phi$ production, $\phi \rightarrow \chi \chi$ tt + ω production. $\omega \rightarrow$ [A=0] (X) m 200 m_x [GeV] Limit on g m(X) [GeV] s=13 TeV . 13.3 fb 200F ATLAS Preliminary oserved limit, g=3.5 imit on $g_{\chi} = g_{q} = g$ Expected limit, g = 3.5 (±1 σ_{exp}) L = 13.3 fb⁻¹, **√**s=13 TeV = 13 TeV, 13.2 fb⁻ Scalar mediato Expected limit, g=3.5 (±1 σ_{evel}) 180 Scalar Mediato Observed limit, g = 3.5 250 ATLAS Preliminary 160 on g Expected limit $(\pm 1\sigma_{exp})$ ATLAS Preliminary 140 Contours for g=3.5 200 150 120 150 100 100 80 100 60 50 40 20 350 200 250 300 400 450 500 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 450 500 450 500 m(φ) [GeV] m(φ) [GeV] m_o [GeV] LAS-CO<u>NF-2016-050</u> ATLAS-CONF-2016-077 TLAS-CONF-2016-076

Associate production of bottom quarks also studied in <u>ATLAS-CONF-2016-086</u>

M. McDonald, University of Melbourne

CMS DM Plus Top Quarks Analyses

Selection: Optimised for top decay mode

Fully hadronic decays categorised by number of \rightarrow top-tags

Dominant Backgrounds: SM top pairs

Associate production with bottom quarks studied in <u>CMS-PAS-B2G-15-007</u>. Mono-top production studied in CMS PAS EXO-16-040

resolved top tagger discriminant

Combined

2.2 fb⁻¹ (13 TeV)

M. McDonald, University of Melbourne

Dijet Searches

ATLAS Dijet Analyses

Model(s): Z' leptophobic Z' models assuming negligible branching to DM

Selection: Two jets with |y^{*}| < 0.3, |y^{*}| < 0.6 or |y^{*}| < 0.8

Jet p_T determines m_{jj} which can be probed → different searches covering different mass ranges

Resonance searches also conducted in di-b-jet channel in ATLAS-CONF-2016-031

X

CMS Dijet Analyses

Model(s): Z' leptophobic vector and axial-vector models **Selection:** Two jets with $|\Delta \eta_{ij}| < 1.3$

M. McDonald, University of Melbourne

ATLAS & CMS Dijet Analyses

M. McDonald, University of Melbourne

Summary of Mono-X and Dijet Search Results

Comparison with Direct & Indirect Detection Constraints

Phys. Rev. D 94, 032005 (2016)

Long-Lived Particle Searches

M. McDonald, University of Melbourne

CosPA 2016

November 30, 2016

ATLAS & CMS Long-lived Charged Particle Analyses

Slow-moving heavy charged LLPs exhibit a higher rate of energy loss via ionisation

- → Large dE/dx in ID measurements
- → β from time-of-flight (TOF) measurements

Phys.Rev. D93 (2016) 112015

Particle mass extracted with parametric Bethe-Bloch function:

$$\frac{dE}{dx} = \frac{p_1}{\beta^{p_3}} ln \left[1 + (p_2 \beta \gamma)^{p_5} \right] - p_4$$

Selection

Metastable' signal region (τ_{LLP} < 50 ns)
 → Tracks reconstructed in ID only

'Stable' signal region ($\tau_{LLP} \ge 50$ ns)

→ Tracks reconstructed in ID and muon system

See also <u>Phys.Lett.B (2016) 647-665</u>

CMS PAS EXO-16-036

Particle mass extracted via dE/dx discriminator:

$$I_{\rm h} = K \frac{m^2}{p^2} + C$$

Selection

'Tracker-only' signal region (for

Q-suppressed LLPs)

→ Tracks reconstructed in the silicon detectors

'Tracker+TOF' signal region

→ Tracks reconstructed in the silicon and muon detectors

ATLAS & CMS Long-lived Charged Particle Analyses

ATLAS Long-lived Neutral Particle Analysis

Selection: Two displaced hadronic-jets

→ No tracks in the ID, minimal energy in the EM calorimeter

Dominant Backgrounds: Multi-jet processes, cosmic-ray µs, and BIBs

```
Model(s): Simplified hidden sector toy model, with \tau_{LLP} as a free parameter
```


Search for displaced 'lepton-jets' in <u>ATLAS-CONF-2016-042</u>

M. McDonald, University of Melbourne

CosPA 2016

p

p

 Φ

- 🏹

Conclusions

Extensive search program for dark matter within the ATLAS and CMS experiments

→ Complement to direct and indirect detection searches

Dark matter detection in mono-X (X = jets, W/Z/Higgs bosons, γ) plus missing transverse energy channels

Mediator detection in dijet resonance searches

Hidden sector interrogation via long-lived particle searches

No excess over SM predictions

→ Exclusion limits interpreted within the context of a benchmark set of Simplified Dark Matter Models and Effective Field Theories

Doubling of 2016 dataset since publication of most analyses

→ New results soon to follow!

M. McDonald, University of Melbourne

CosPA 2016

November 30, 2016

34

ATLAS Mono-Jet Analysis: Background Estimation Technique

The W/Z + jets , and Z/ γ *(\rightarrow ll) + jets (l = μ , τ) backgrounds are constrained using MC samples normalized with data in dedicated control regions (CRs)

→ Significantly reduces MC-based theoretical/experimental systematic uncertainties

Example: $Z(\rightarrow vv) + jets$

- 1. Define a SR-orthogonal CR by reversing veto on muon
- 2. MC-based scale factors to extrapolate background contribution to SR:

 $N_{\text{signal}}^{Z(\rightarrow\nu\bar{\nu})} = \left(N_{W(\rightarrow\mu\nu),\text{control}}^{\text{data}} - N_{W(\rightarrow\mu\nu),\text{control}}^{\text{non-W}}\right) \times \frac{N_{\text{signal}}^{\text{MC},Z(\rightarrow\nu\bar{\nu})}}{N_{\text{control}}^{\text{MC},W(\rightarrow\mu\nu)}}$ where $N_{\text{signal}}^{\text{MC},Z(\rightarrow\nu\bar{\nu})}$ = background from MC in the SR $N_{W(\rightarrow\mu\nu),\text{control}}^{\text{data}}$ = number of data events in the CR $N_{\text{control}}^{\text{MC},W(\rightarrow\mu\nu)}$ = number of W($\rightarrow\mu\nu$) + jets in MC $N_{W(\rightarrow\mu\nu),\text{control}}^{\text{non-W}}$ = non-W($\rightarrow\mu\nu$) contribution (mainly due to top-quark and diboson processes)

3. Normalization factors extracted simultaneously with a global fit to all CRs which includes systematic uncertainties (and correlations)

Remaining SM backgrounds (tt, single top, and dibosons) determined using MC, non-collision/ multijet contributions extracted from data

M. McDonald, University of Melbourne

ATLAS Mono-Jet Analysis Systematic Uncertainties

Source of Uncer	Total Background Uncertainty				
Absolute jet and MET energy sc	±0.5% for IM1 and ±1.6% for IM7				
Jet quality requirements, pileup corrections to the jet pT and ME	description and CT	±0.2% to ±0.9%			
Lepton identification and recons energy/momentum scale and res	struction efficiencies, solution	±0.1% - ±1.4% for IM1 and ±0.1% - ±2.6% for IM7			
W/Z + jets renormalization/fac parton-shower matching scales a	torization, and and PDFs	±1.1% to ±1.3%			
Model uncertainties and NLO electroweak corrections for W/Z + jets		±2.0% and ±3.0% for IM1 and IM5, ±3.9% for IM7			
MC-based estimate of tt and single-top cross-sections		±2.7% and ±3.3% for IM1 and IM7			
MC-based estimate of diboson contribution		±0.05% and ±0.4%			
±100% uncertainty on multijet and NC backgrounds		±0.2% for IM1			
Statistical limitations (CRs and MC samples)		±2.5% for IM1 and ±10% for IM7			
□ All systematic uncertainties treated as nuisance parameters with Gaussian shapes in fit to MET bins					
1. McDonald, University of Melbourne	CosPA 2016		November 30, 2016	30	

Ν

CMS Mono-Z (leptonic) Analysis Systematic Uncertainties

Source of uncontainty	Bkg.	Simplified	Simplified Model unc.	
Source of uncertainty	unc. (%)	Exp. (%)	Theory (%)	-
Integrated luminosity	6.2	6.2		9.5
Lepton trigger & identification efficiency	4	4		
Lepton momentum scale and resolution	2	2	_	
Jet energy scale, resolution	0.5	0.4	_	77
b tagging efficiency	2	2	—	1.1
Pileup	0.6	0.6		
Efficiency for missed lepton (WZ)	2.2			
PDFs, α_S	1.4		1.0	0.9
Renorm./fact. scales (signal)			5.0	
Renorm./fact. scales (VV)	2.5			E 1
Renorm./fact. scales (VVV)	5.5		—	5.4
Renorm./fact. scales (gg \rightarrow ZZ)	1.0	<u> </u>		
Electroweak corrections on $q\overline{q} \rightarrow VV$	7.6			5.5
Underlying event			3	2.9
DY normalization	100		3 53	1.4
$t\bar{t}$, tW , W^+W^- , W^+ jets normalization	14.0		2. <u></u> 2	1.2
MC statistics (signal)		1.1	3. <u></u> 0	
MC statistics (ZZ, WZ, VVV)	1.4		_	2.4
MC statistics (DY)	41		_	2.4
MC statistics ($t\bar{t}$, tW , W^+W^-)	10.5		27 71	

Impact: relative change of the expected best fit signal strength that is introduced by the variation for a simplified model signal scenario with a vector mediator of mass 200 GeV and $m_{DM} = 50$ GeV

			Gluino	Stau
Source of Systematic Uncertainties	Relative Uncertainty (%)		M=1800 GeV	M=651 GeV
Signal acceptance	Trk-only	Trk+TOF	Trk-only	Trk+TOF
- Trigger efficiency	13	13	13	13
 Track momentum scale 	0 - 5	0 - 14	0.8	0.7
- Track reconstruction	0-2	0-2	0.5	0.7
- Ionization energy loss	0 - 13	0 - 7	3	3
 HIP background effect 	0 - 10	0 - 10	7	10
- Time-of-flight		0 - 6		2
- Muon reconstruction		2		2
- Pileup	0-2	0-2	0.4	0.2
Total uncertainty on signal acceptance	0 - 20	0 - 20	15	17
Collision background uncertainty	20	20	20	20
Luminosity uncertainty	6.2		6.2	

Systematic uncertainties for the various HSCP searches. All values are relative uncertainties. The middle columns show the range of values while the last two columns show two example cases: gluino (f=0.1, M=1800 GeV) and GMSB stau (M=651 GeV).

CMS Mono-Z (leptonic) Analysis

CMS PAS EXO-16-038

ATLAS & CMS Mono-Higgs($\rightarrow \gamma \gamma$) Analyses

 $h \rightarrow \gamma \gamma$ has low BR but clean signal \rightarrow look for excess in the m_{yy} spectrum

Selection: Two high p_T isolated photons plus large E_T^{miss}

Dominant backgrounds: Resonant and non-resonant contributions

Model(s): Z' leptophobic models

ATLAS & CMS Mono-Higgs($\rightarrow \gamma \gamma$) Analyses

ATLAS DM Plus Bottom Quarks Analysis

Search for DM produced in association with bottom quarks

Selection: Two b-tagged jets plus large $E_{\rm T}^{\rm miss}$

Model(s): Scalar and pseudoscalar mediators with Dirac fermion DM

CMS DM Plus Bottom Quarks Analysis

 $E_{\rm T}^{\rm miss}$ + bb searches also sensitive to $E_{\rm T}^{\rm miss}$ + tt production

→ b quarks produced in top quark decays

Selection: Two signal regions categorised by either one or two b-tagged jets plus large $E_{\rm T}^{\rm miss}$

Trigger-Object Level Analysis

Bandwidth allocation for single-jet triggers limits statistics for particles lighter than 1 TeV

→ Full event information requires trigger prescale (1/prescale factor events recorded)

To avoid prescaling, threshold p_T of the jet must be large \rightarrow restricts minimum m_{ii}

For lighter masses, instead record partially-built event information

- 1. L1 identifies ROI in 0.2×0.2 calorimeter segments
- 2. HLT reconstructs and calibrates 'trigger' jet
- ROI with E_T > 75 GeV at EM scale → record summary of trigger jet to Trigger-Object Level Analysis (TLA) stream, including 4-momentum and jet ID variables, excluding readout from tracking and muon detectors

Partially-built events are <5% of full event size, allowing for higher rates to be recorded (2 kHz)

Offline trigger jets calibration akin to fullyreconstructed jets

- \rightarrow µ correction
- → Trigger jet specific MC-based JES calibration
- → No GSC correction (missing ID and muon spectrometer information)
- → Dedicated correction for trigger jets

ATLAS Long-lived Neutral Particle Analysis

Selection: At least two 'lepton-jets', categorised by species of the constituent particles:

 Two non-combined μ, one non-combined μ and one CalRatio jet, two CalRatio jets

Model(s): Two Falkowsky-Ruderman-Volansky-Zupan models where the Higgs decays to either 2 or 4 dark γ

