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• Modified gravity - why change a good thing? 
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• Motion of matter, galaxies as test particles 

• Motion of light, photons as test particles 

• Cosmological data 
• Redshift-Space distortions (WiggleZ, BOSS, 2dFLenS) 

• Weak gravitational lensing (CFHTLens, KiDS, DES) 

• Beyond potentials - fifth forces 
• Deterministic and stochastic velocity bias 
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Testing gravity
• The expansion of the Universe is 

accelerating 
• The simplest explanation of a 

cosmological constant is 
problematic 

• Vacuum energy calculations imply 
cosmological constant is 10120 
times larger than its measured 
value - too small 

• Coincidence problem - why is 
density of matter (1/a3) so close to 
density of dark energy (~constant) 
today?

Baryons
Dark Matter
Dark Energy



Cosmological Constant 
Problem

• Why is the energy density of the vacuum so small? 

• Alternatively we can ask, why does the vacuum energy 
gravitate so little? 

• “The effective Newton constant becomes very small at 
large length scales, so that sources with immense 
wavelengths and periods -- such as the vacuum 
energy-- produce minuscule curvature” (Arkani-Hamed, 
Dimopoulos, Dvali, Gabadadze) 

• Similar to the manner in which long wavelength 
excitations beyond the Debye sphere are screened by 
the effective photon mass in a plasma.



Modified Gravity
• Consider this as a change in the theory of gravity at large 

scales 

• Can be either: 

• gravity gets weaker on large scales, owing to extra-
dimension effects (Dvali-Gabadadze-Porrati model) 

• graviton has (induced) mass, meaning it does not 
propagate in the expected manner on large scales 
(massive gravity) 

• Theories like this predict existence of extra degrees of 
freedom 

• The scalar degrees of freedom will affect the generation 
and propagation of gravitational instabilities



Theory of Structure 
Formation



Tracing structure
• Our observable universe is 

filled with structure, on all 
scales 

• It’s only visible through 
galaxies 

• The relation between 
distribution of galaxies 
and matter is given by 
the ‘bias’ 

• Galaxies here are 
functioning as test particles 
- tracing out the gravitational 
field
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Post-recombination: 
Perturbation theory

• Metric:  

• The force equation for matter is 

• The perturbation equation is  

•  From these we derive the growth equation
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Einstein Gravity
• Here the Newtonian potential ɸ is given by the Poisson 

equation 

• If we assume no anisotropic stress, ɸ = - Ψ and so we can 
complete the system (assuming matter domination, and 
sub-horizon scales) 

• In the completely matter dominated limit, δ~a 

• In the quasi-static limit, the growth of matter fluctuations 
can be written as
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Modified Gravities
• Single fluctuation generated by Newtonian potential Ψ 

• transfer function T(k): describes how initial metric 
fluctuation is reprocessed into a late-time configuration of 
the species 

• Growth rate now has a more general form 

• Deterministic bias
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Massless particle motion:  
gravitational lensing

• The motions of photons are 
also perturbed by the local 
gravitational potential 

• This is is manifested as 
gravitational lensing 

• The ellipticities of galaxy 
shapes become correlated 
with the matter density, 
integrated over the whole 
photon trajectory



Lensing potential
• Null condition states 

• Thin lens approximation gives 

• Finally we compute deflection equation 

• Difference between potentials is lensing potential, and 
deflection is sourced by spatial gradient of lensing potential
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Cosmological Data



Redshift-space distortions

• The motions of galaxies 
are perturbed by the 
local gravitational field 

• The Power spectrum/
correlation function in 
the line of sight is 
distorted relative to the 
transverse direction 

• Assuming these 
motions are generated 
by matter 
perturbations, we can 
measure the growth of 
structure



Multipole power spectra
• Density and velocity divergence have different angular 

dependence 

• Use Power spectra decomposed into Legendre polynomials 
(Cole, Fisher and Weinberg 1994) 

• Orthogonality of the Legendre polynomials leads to the 
relation
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1X
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2dFlens - Results

Blake et al (2016)



Growth history
• Growth rate (f) and 

amplitude of 
fluctuations (σ8) 
sourced by both 
gravitational force 
and expansion rate 

• Need to fit for both 
simultaneously, so 
some degeneracy 
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Peculiar velocities
• Data from the Two Micron 

All-Sky Survey (2MASS; 
Skrutskie et al. 2006) Tully-
Fisher Survey (2MTF; 
Masters 2008) covers most 
of the sky, and uses 2018 
galaxies to measure the 
bulk flow. 

• Numerical simulation for 
the same sky, and select 
from the same redshift 
distribution 

• f(R) gravity predicts a 
larger bulk flow velocity 
than ΛCDM
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Peculiar velocity power 
spectra

• Can measure power 
spectra of velocities 

• No galaxy bias 

• Use to measure 
deviations from 
gravitational force law 
on different scales

Johnson, Blake, Dossett, Koda, 
Parkinson, Joudaki, MNRAS 458 

(2016), 2725-2744



Lensing Data
•Lensing convergence 

power spectra 

• tomographic angular 
two-point shear 
correlation function

Hildebrandt et al (KiDS-450), 2016
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Parameter constraints

0.16 0.24 0.32 0.40

⌦m

0.6

0.8

1.0

1.2

�
8

KiDS-450

CFHTLenS (MID J16)

WMAP9+ACT+SPT

Planck15

0.3 0.6 0.9 1.2

⌦m

0.0

0.4

0.8

1.2

1.6

�
8

KiDS-450 (MG)

Planck 2015 (MG)

KiDS (⇤CDM)

Planck (⇤CDM)

0.0 1.5 3.0 4.5 6.0

⌃2

0

2

4

6

8

10

Q
2

KiDS-450 (LS)

KiDS-450 (FS)

KiDS+Planck (LS)

KiDS+Planck (FS)

Joudaki et al 2016



Fifth forces



Fifth forces
• (With Seery and Burrage) 

• Metric:  

• The force equations for matter and radiation are 

• Perturbation equations 
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Stochastic bias
• Several primordial perturbations:  

• fifth force mediated by scalar field (ɸ) that also has 
its own fluctuations 

• Relation between growth and density has now changed 

• Here W is a Wronskian-like function which measures 
the correlation of δ and θ
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New correlation 
functions

• The correlation functions now satisfy 

• If we measure ⟨δmδm⟩, ⟨δmθm⟩ and ⟨θmθm⟩, and do not see 
complete correlation between δ and θ, we have gone 
beyond feff as a test of modified gravity
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Example: Galileons
• Galileons are scalar fields that are invariant under shifts in the 

field value 

• Only 5 possible Lagrangians that give 2nd order equations of 
motion and are ghost free
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Coupling to matter
• We expect a coupling of the Galileon field (for example) to matter 

• The field starts small, and remains small during the evolution of the 
universe 

• The perturbation of the field can grow, and will grow quickly  at late 
times through the coupling to the matter perturbation 

• While the Galileon fluctuation will be smaller than the matter 
perturbation at matter-radiation decoupling, it can grow and 
become very large today. 

• This is stochastic bias, where structures can form without presence of 
standard `Newtonian’ potential generated by the presence of matter
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Screening mechanisms
• If the gravity is different, we can test it on lab or solar system  system 

scales 
• e.g. fifth force effect, or scale-dependent GNewton 

• Three “screening mechanisms” save the theories 

• Vainshtein mechanism: higher-order corrections (cubic and above) 
recover GR on scales smaller than Vainshtein radius (DGP, Galileon) 

• Chameleon mechanism: mass of field large enough to suppress 
range of fifth force (f(R) theories) 

• Symmteron mechnism: direct coupling to stress-energy tensor (T) is 
small

L⊃ -½Z(ɸ0)(∂δɸ)2 -½m2(ɸ0)δɸ2 +(β(ɸ)/mP)δɸδT
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Lensing
• Fifth forces: cannot distinguish between strength of coupling 

and size of field fluctuations 

• Need to measure size of metric fluctuations independently 

• A conformal coupling induces no change in the lensing potential 

• Photons only feel Newtonian potential 

• However, matter formation (that sources the lensing potential) 
still influenced by fifth forces 

• Considering only Galileon actions up to L3 (which we are), there 
is no anisotropic stress, so ɸ = - Ψ  

• Cross-correlation of lensing with RSD will determine strength of 
stochastic bias



Conclusions
• Structure formation tests of gravity effectively measure force law on 

largest scales 

• The growth rate f gives the correlation between density and velocity 
statistics of galaxies 

• Lensing power spectrum gives correlation between induced ellipticity and 
density of matter 

• If fifth forces become important at late times, the density and velocity (or 
velocity and lensing) perturbations may no longer be perfectly correlated 

• Galileons are an example of this behaviour, as the fluctuations in the 
field grow at late times and become a new source of structure 
formation, leading to stochastic bias 

• Cross-correlation of lensing and RSD data will provide direct 
measurement of stochastic bias effect



Thank you
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2dFLens
•Spectroscopic survey, providing follow-up of lensing 

galaxies from KiDS survey
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