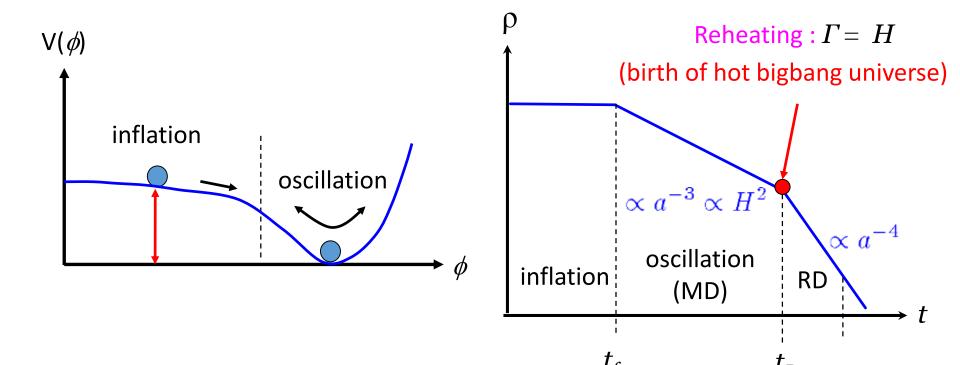


Inflation and Beyond

Misao Sasaki

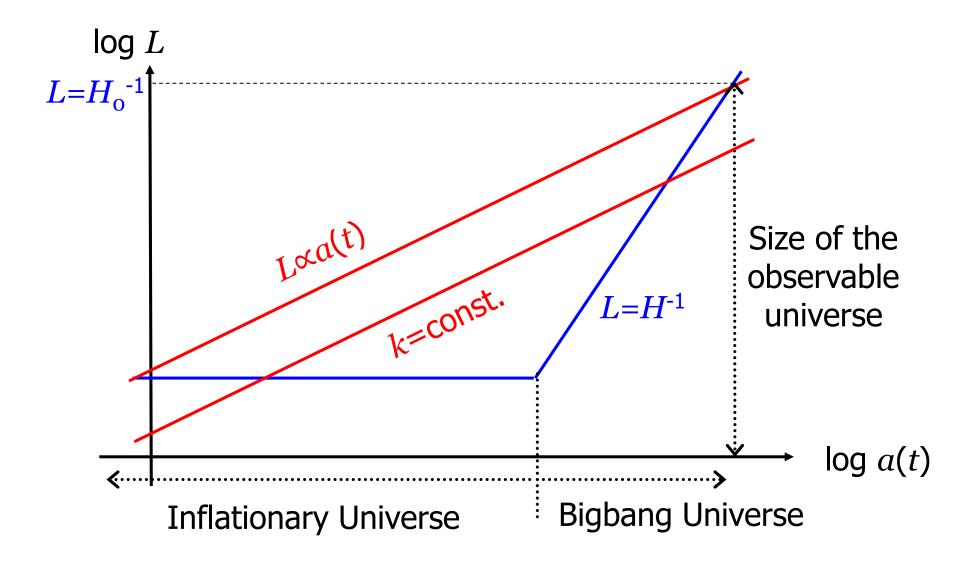
Yukawa Institute for Theoretical Physics Kyoto University

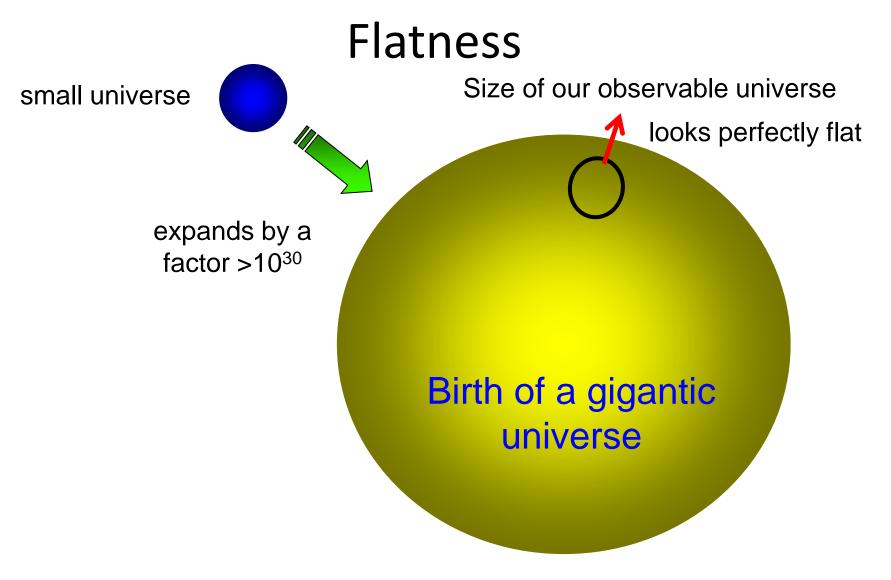
Introduction


What is Inflation?

Brout, Englert & Gunzig '77, Starobinsky '79, Guth '81, Sato '81, ...

- Inflation is a quasi-exponential expansion of the Universe at its very early stage; perhaps at $t\sim 10^{-36}$ sec.
- ➤ It was meant to solve the initial condition (singularity, horizon & flatness, etc.) problems in Big-Bang Cosmology:
- if any of them can be said to be solved depends on precise definitions of the problems.
- Quantum vacuum fluctuations during inflation turn out to play the most important role. They give the initial condition for all the structures in the Universe.
- Cosmic gravitational wave background is also generated.


From inflation to bigbang


After inflation, vacuum energy is converted to thermal energy (called "re"heating) and hot Bigbang Universe is realized.

Kinematics

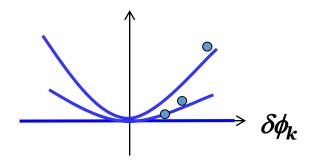
length scales of the inflationary universe

Flatness can be explained only by Inflation

NB: Inflation may not always imply flatness

Dynamics

Seed of cosmological perturbations


Mukhanov '81,

Zero-point (vacuum) fluctuations of ϕ :

$$\delta\phi = \sum_{k} \delta\phi_{k}(t)e^{ik \cdot x}$$

$$\delta \ddot{\phi}_k + 3H \delta \dot{\phi}_k + \omega^2(t) \delta \phi_k = 0 \; ; \quad \omega^2(t) = \frac{k^2}{a^2(t)}$$

harmonic oscillator with friction term and time-dependent \omega

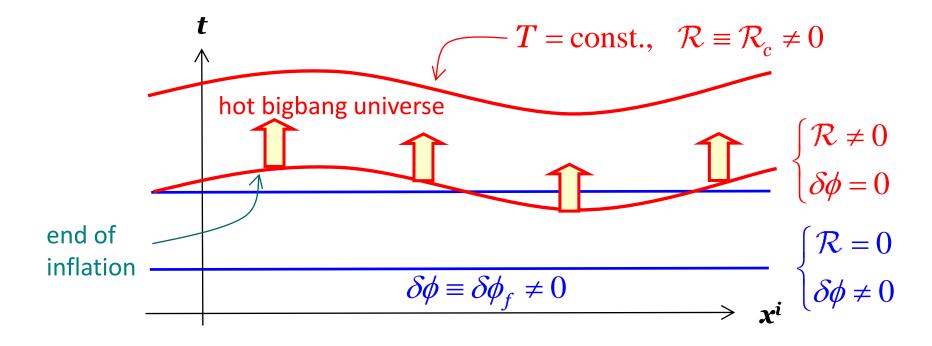
$$\delta\phi_k \rightarrow {\rm const.}$$

••• frozen when $\omega < H$ (on superhorizon scales)

tensor (gravitational wave) modes also satisfy the same eq.

Generation of Curvature Perturbation

curvature (potential) perturbation ${\cal R}$:


$$\delta R^{(3)} = -\frac{4}{a^2} \nabla^2 \mathcal{R}$$

comoving curvature perturbation $\mathcal{R}_c \sim$ - Newton potential

• $\delta\phi$ is frozen on "flat" (\mathcal{R} =0) 3-surface (t=const. hypersurface)


$$\mathcal{R}_c = -\frac{H}{\dot{\phi}} \delta \phi_f$$

• Inflation ends/damped osc starts "comoving" (ϕ =const.) on 3-surface.

Generic predictions of inflation

Spatially flat universe

- Almost scale invariant, adiabatic, Gaussian primordial scalar (curvature) perturbations
- Almost scale invariant, Gaussian primordial tensor (gravitational wave) perturbations

Generates CMB anisotropy Origin of galaxies, stars, ...

Quantitative Predictions

Amplitude of curvature perturbation:

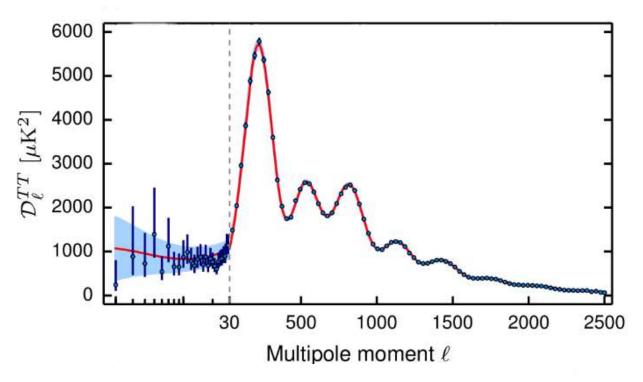
$$\mathcal{R}_{c} = \frac{H^{2}}{2\pi\dot{\phi}}\Big|_{k/a=H}$$
 Mukhanov (1985), MS (1986)

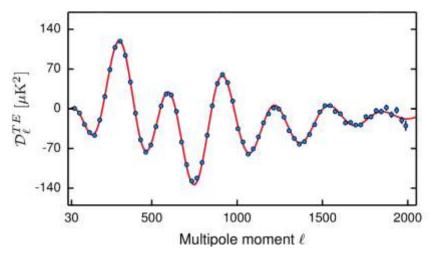
Power spectrum index:

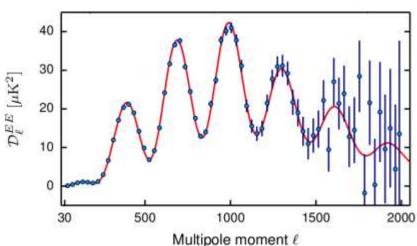
$$M_{pl} \equiv \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{GeV}$$
: Planck mass

$$\frac{4\pi k^3}{(2\pi)^3} P_S(k) = \left[\frac{H^2}{2\pi \dot{\phi}} \right]_{k/a=H}^2 = Ak^{n_S-1} ; \quad n_S - 1 = M_P^2 \left(2\frac{V''}{V} - 3\frac{V'^2}{V^2} \right)$$

Stewart-Lyth (1993)


Tensor (gravitational wave) spectrum:


$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} \; ; \; n_T = -\frac{1}{8} \frac{P_S(k)}{P_T(k)} = -\frac{r}{8}$$
 Liddle-Lyth (1992)


"consistency relation"

Observational results

Planck TT, TE & EE spectrum

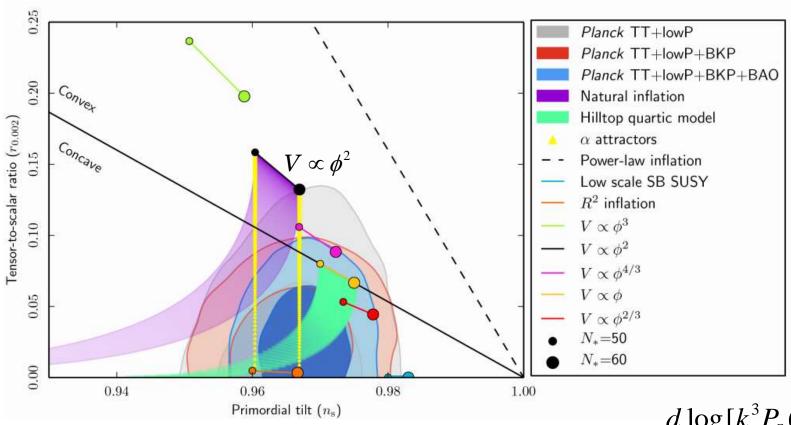
Amplitude of curvature perturbation:

$$\mathcal{R}_{c} = \left. \frac{H^{2}}{2\pi\dot{\phi}} \right|_{k/a=H}$$
 Mukhanov (1985), MS (1986) $\mathcal{R}_{c,\text{obs}} \sim 10^{-5} \implies V^{1/4}(\phi) \lesssim 10^{16} \, \text{GeV}?$

$$M_P \equiv \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{GeV}$$
: Planck mass

• Power spectrum index:
$$M_P = \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{GeV}$$
: Planck mass $\frac{4\pi k^3}{(2\pi)^3} P_S(k) = \left[\frac{H^2}{2\pi\dot{\phi}}\right]_{k/a=H}^2 = Ak^{n_S-1} \; ; \; n_S - 1 = M_P^2 \left(2\frac{V''}{V} - 3\frac{V'^2}{V^2}\right)$ Stewart-Lyth (1993)

$$n_{S,Planck}$$
 $-1 = -0.0355 \pm 0.0049 \Leftrightarrow n_S -1 \sim -0.04$ for a typical model Mukhanov & Chibisov (1981)


Tensor (gravitational wave) spectrum:

$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} \; ; \; n_T = -\frac{1}{8} \frac{P_S(k)}{P_T(k)} \equiv -\frac{r}{8}$$
 Liddle-Lyth (1992)

to be observed ...

Planck constraints on inflation

Planck 2015 XX

- scalar spectral index: $n_s \sim 0.96$
- tensor-to-scalar ratio: r < 0.1
- ullet simplest $V \propto \phi^2$ model is almost excluded

$$n_{s} - 1 = \frac{d \log[k^{3} P_{s}(k)]}{d \log k}$$
$$r = \frac{P_{r}(k)}{P_{s}(k)}$$

Implications

Inflation as the Origin of All Structures of the Universe

Current status

- scalar spectral index: $n_s < 1$ at $\sim 5 \sigma$
- tensor/scalar ratio: r < 0.1 implies E_{inflation} < 10¹⁶ GeV
- simple, canonical models are on verge of extinction $(m^2\phi^2 \text{ model excluded at } > 2 \sigma)$
- R² (Starobinsky) model seems to fit best. But why? (large R² correction but negligible higher order terms)
- f_{NL}^{local} <O(1) suggests (effectively) single-field slow-roll (but non-slow-roll models with f_{NL}^{local} =O(1) not excluded)

element of non-canonicality is needed

Beyond (standard model of) Inflation

non-canonical models

Non-canonical kinetic term? (c_s <1?)

$$P_{\!\scriptscriptstyle \mathcal{R}} \propto rac{1}{c_{\!\scriptscriptstyle s}}$$
 $\;\;$ ($c_{\!\scriptscriptstyle s}$: sound speed) , $f_{\!\scriptscriptstyle
m NL}^{\it equil} \propto rac{1}{c_{\!\scriptscriptstyle s}^2}$

Planck: $c_s > 0.024$ at 95% CL

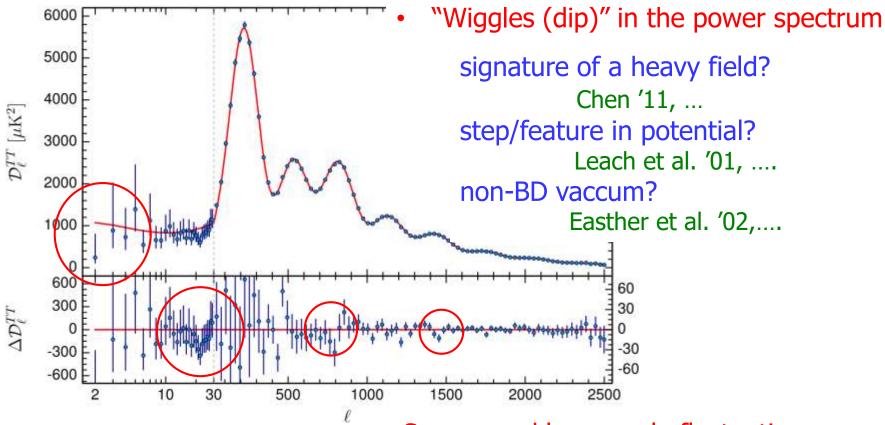
non-minimal coupling to gravity?

$$V(\phi) + \xi \phi^2 R$$
 $\Longrightarrow r = \frac{P_T(k)}{P_R(k)} \propto \frac{1}{\xi}$ Planck: $\xi > O(10)$?

scalar-tensor with derivative couplings (Hordeski) ?

$$c_s < 1$$
, $c_{s,T} < 1$, $c_s \neq c_{s,T}$

tensor propagation speed


multi-field models, non-attractor inflation, ...

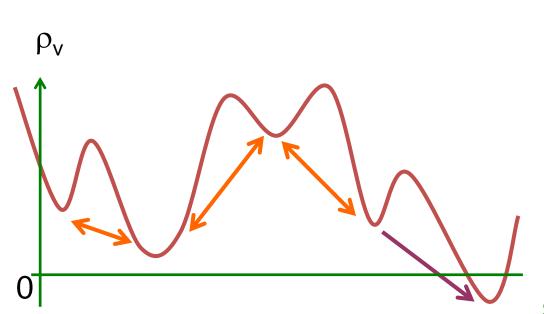
non-existence of Einstein frame?

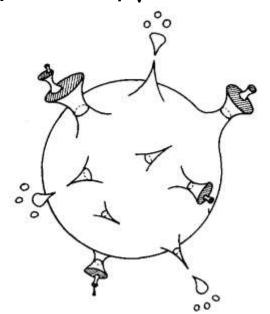
definition of inflation?

Anomalies & Features

Suppressed large scale fluctuations

featured potential? open inflation? Linde, MS & Tanaka '99,


Cosmic Landscape?


string theory suggests an intriguing picture of the early universe

Maybe we live in one of these vacua...

- Universe jumps around in the landscape by quantum tunneling
 - it can go up to a vacuum with larger $\rho_{\rm V}$ expansion rate de Sitter (dS) space ~ thermal state with $T=H/2\pi$
 - if it tunnels to a vacuum with negative ρ_v , it collapses within $t \sim M_P/|\rho_v|^{1/2}$.
 - so we may focus on vacua with positive ρ_v : dS vacua

Sato, Kodama, MS & Maeda ('81)

Open Inflation in Cosmic Landscape

Universe inside nucleated bubble = spatially open universe

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{\rho}{3M_{P}^{2}} + \frac{1}{a^{2}}$$
 negative spatial curvature

negative curvature

$$1 = \frac{\rho}{3M_P^2 H^2} + \frac{1}{a^2 H^2} = \Omega + \Omega_K$$

density parameter

Observational data indicate $1-\Omega_0 = \Omega_{K,0} \sim < 10^{-2}$: almost flat

("0" stands for current value)

What if this is the case?

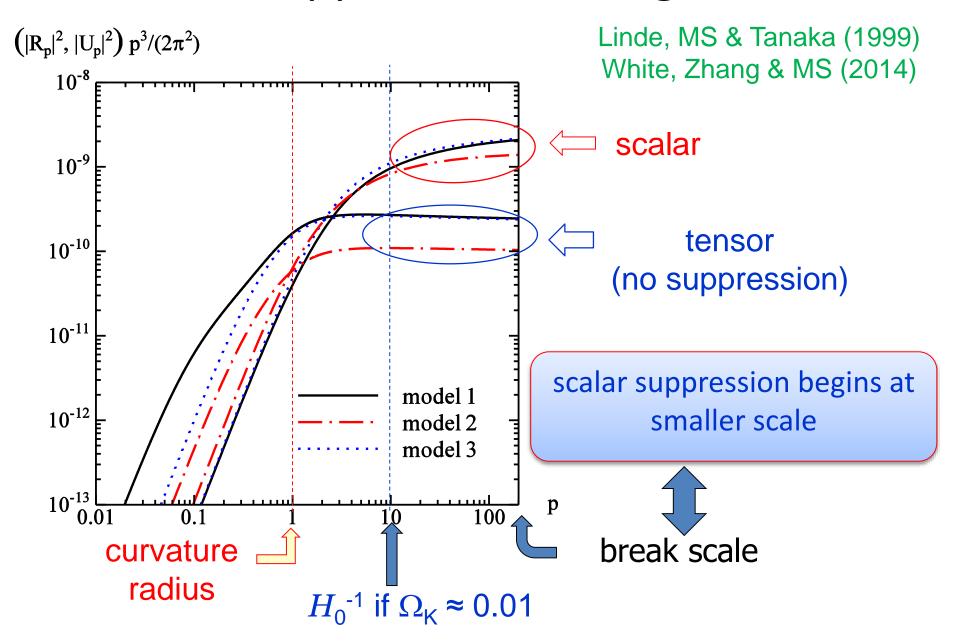
> two possibilities

1. inflation after tunneling was short enough (N~60)

$$\Omega_{K,0} = 1 - \Omega_0 = 10^{-2} \sim 10^{-3}$$
 "open universe"

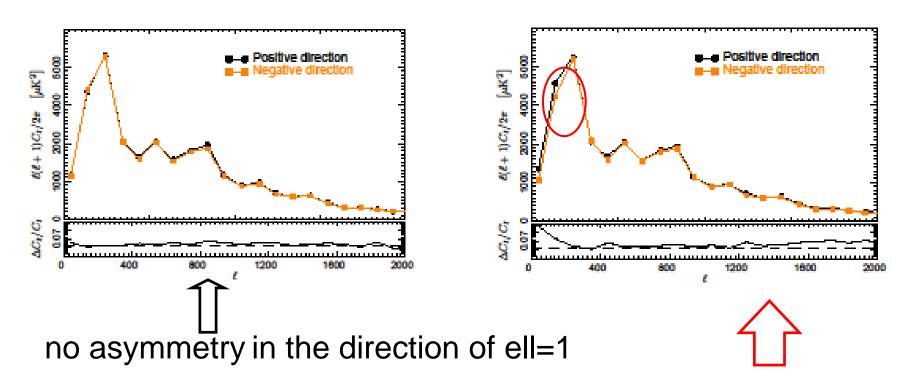
signatures in large angle CMB anisotropies?

Kanno, MS & Tanaka ('13), White, Zhang & MS ('14), ...


2. inflation after tunneling was long enough (N>>60)

$$\Omega_{K,o} = 1 - \Omega_o \ll 1$$
 "flat universe"

signatures from bubble collisions


Sugimura, Yamauchi & MS ('12), ...

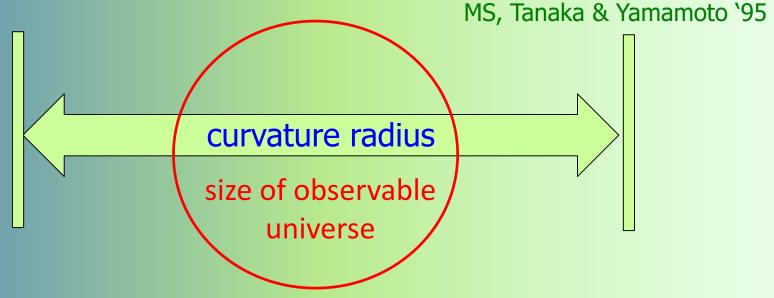
scalar suppression on large scales

dipole power asymmetry

$$P(k; \mathbf{n}) = \left(1 + 2\mathbf{A}\mathbf{d} \cdot \mathbf{n}\right) P_{iso}(k)$$
line of sight

dipole asymmetry in the direction maximizing the asymmetry

Planck 2013 XXIII

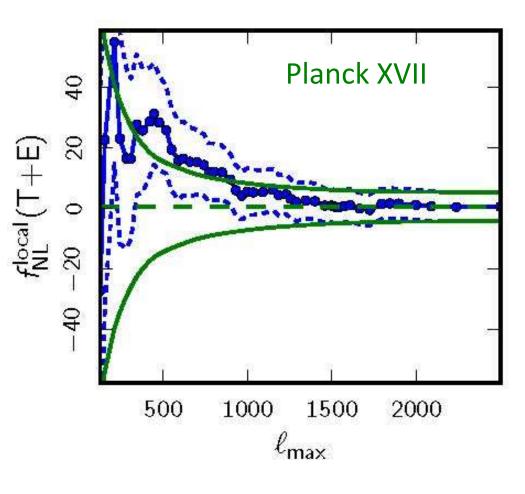

δT	(1 . 🗖	δT
\overline{T}	$=(1+A)\cos$	θ / T

 $A \approx 0.07$

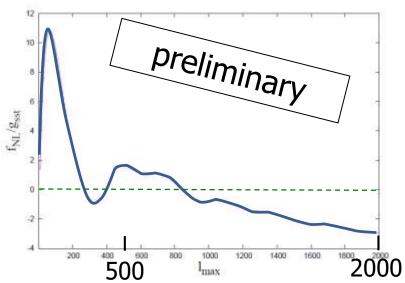
Data set	FWHM "	1 A	(l,b) [°]	$\Delta \ln \mathcal{L}$	Significance
Commander	5	0.078+0.020	$(227, -15) \pm 19$	8.8	3.5σ
		-3.716	Marin Salle area		25.000
NILC	5	0.069+0.000	$(226, -16) \pm 22$	7.1	3.0 <i>o</i> -
SEVEM		0.066+0.021	$(227, -16) \pm 24$	6.7	2.9σ
SMICA	5	0.065+0.021	$(226, -17) \pm 24$	6,6	2.9σ
WMAP5 ILC	4.5	0.072 ± 0.022	$(224, -22) \pm 24$	7.3	3.3σ
Commander	6	0.076+0.024	$(223, -16) \pm 25$	6.4	2.8σ
NILC	6	$0.062^{+0.025}_{-0.026}$	$(223,-19)\pm38$	4.7	2.3σ
SEVEM	6	0.060+0.025	$(225, -19) \pm 40$	4.6	2.2σ
SMICA	6	0.058+0.025	$(223, -21) \pm 43$	4.2	2.1σ
Commander	7	0.062+0.028	$(223, -8) \pm 45$	4.0	2.0σ
NILC	7	0.055 +0.029	$(225, -10) \pm 53$	3.4	1.7σ
SEVEM	7	0.055+0.029	$(226, -10) \pm 54$	3.3	1.7σ
SMICA	7	0.048+0.029	$(226, -11) \pm 58$	2.8	1.50
Commander	8	0.043+0.032	$(218, -15) \pm 62$	2.1	1.2σ
mc	8	0.049+0.032	$(223, -16) \pm 59$	2.5	1.4σ
SEVEM	8	0.050+0.032	$(223, -15) \pm 60$	2.5	1.4σ
SMICA	8	0.041+0.032	$(225, -16) \pm 63$	2.0	1.10
Commander	9	0.068 +0.035	$(210, -24) \pm 52$	3.3	1.7σ
MLC	9	0.076 +0.035	$(216, -25) \pm 45$	3.9	1.9σ
SEVEM	9	0.078 +0.035	$(215, -24) \pm 43$	4.0	2.0σ
SMICA	9	0.070+0.035	$(216, -25) \pm 50$	3.4	1.8σ
WMAP3 ILC	9	0.114	(225, -27)	6.1	2.8σ
Commander	10	0.092+0.037	(215,-29) ± 38	4.5	2.2σ
mrc	10	0.098 +0.037	$(217, -29) \pm 33$	5.0	2.3σ
SEVEM	10	0.103 +0.037	$(217, -28) \pm 30$	5.4	2.5σ
SMICA	10	0.094+0.037	$(218, -29) \pm 37$	4.6	2.2σ

Gradient of a field over the horizon scale

= Super-curvature mode in open inflation

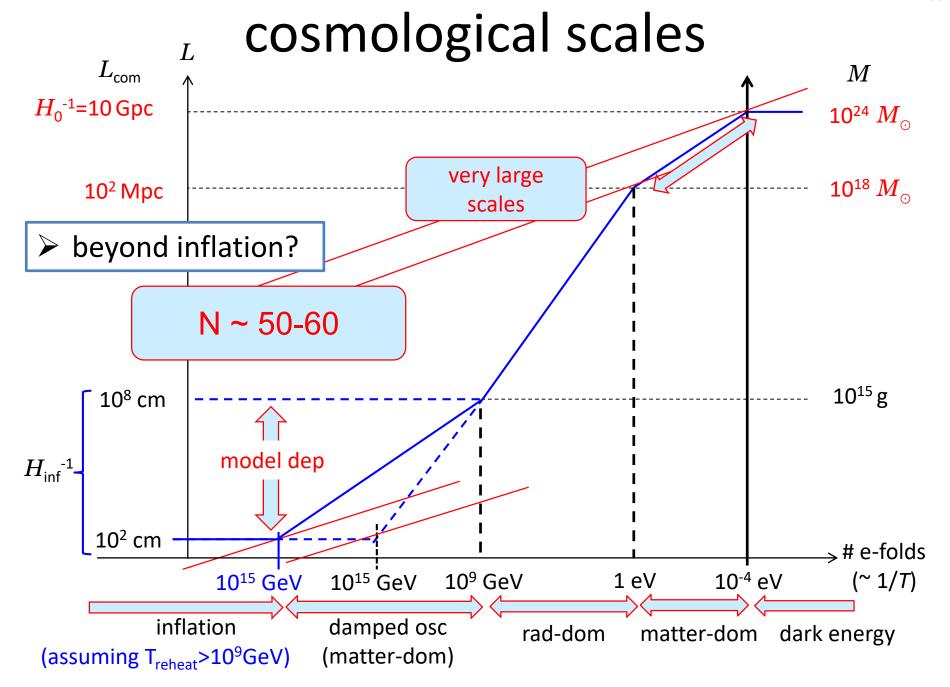


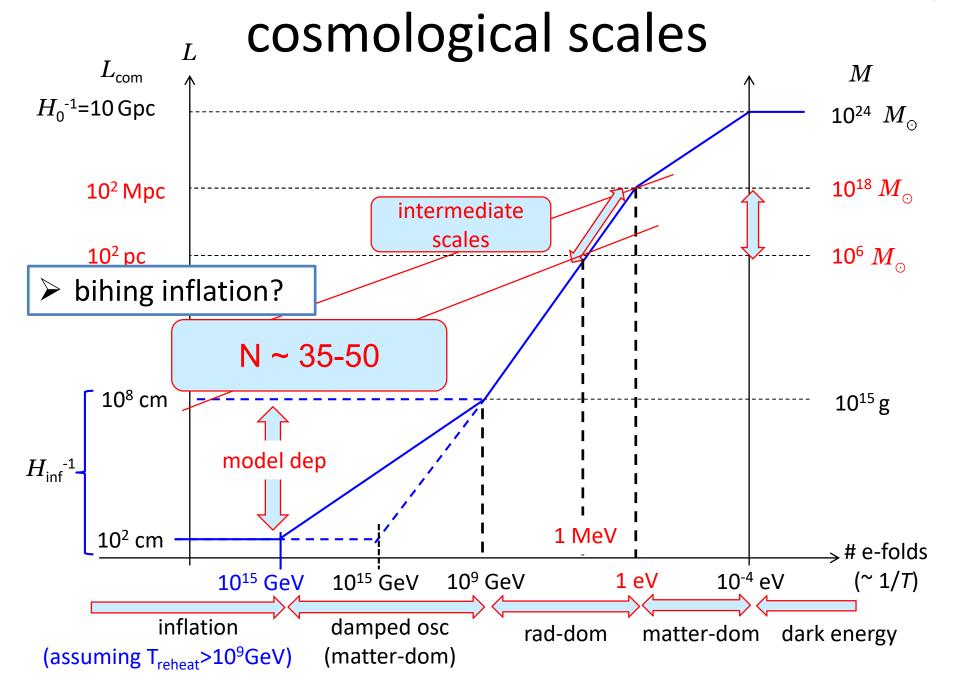
may modulate the amplitude of perturbation depending on the direction.

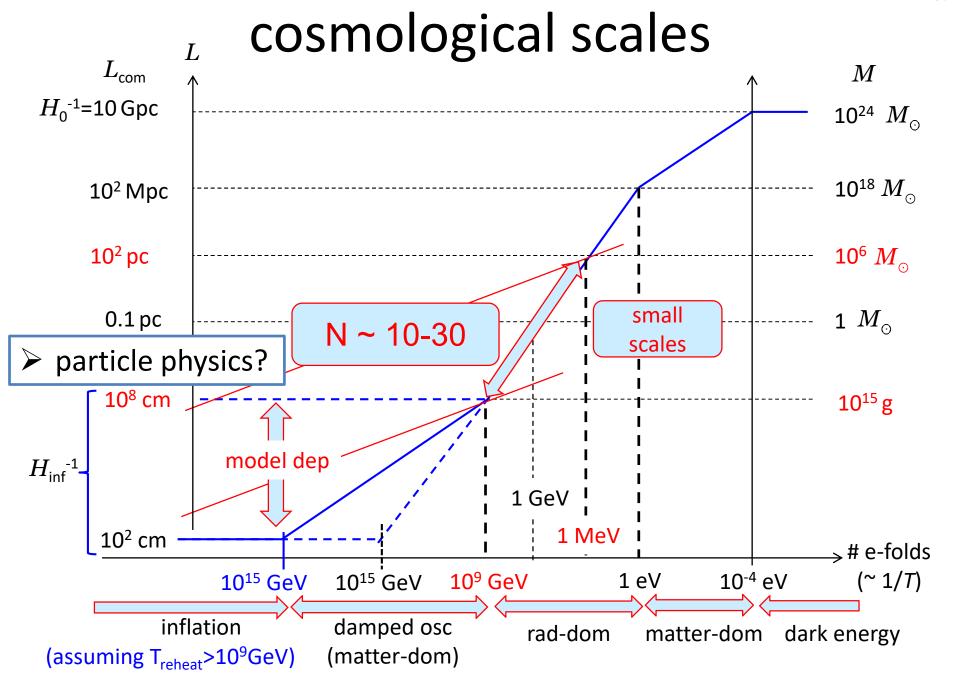

leading order effect is dipolar if this is the case, then $\Omega_K \gtrsim 10^{-3}$

Kanno, MS & Tanaka '13 Brynes, Domenech, MS & Takahashi '16

Scale-dependent non-Gaussianity?


- Slightly above 1-σ deviation from zero
- What if this is primordial?




may be due to TSS coupling in a massive tensor theory

Domenech, Hiramatsu, Lin, MS, Shiraishi, Wang '16

Future issues

definition of inflation?

(conformal trans can give any expansion law)

 $ds^2 = -dt^2 + a^2(t)d\vec{x}^2$ Domenech & MS '15 $d\tilde{s}^2 = \Omega^2(t)ds^2 \Rightarrow d\tilde{t} = \Omega(t)dt, \ \tilde{a}(\tilde{t}) = \Omega(t)a(t)$

- initial condition before inflation, multiverse?
- successful reheating?
- non-linear effects, non-Gaussianities?
- gravitational waves at second order, PBHs?
- massive gravity?

•

Identification of Inflaton!

Inflation as the tool to explore physics of the early Universe

Era of

Observational Inflationary Cosmology!