Implication of ALEPH 30 GeV dimuon excess at the LHC

Chaehyun Yu

Collaboration with P. Ko (KIAS), Jinmian Li (KIAS) Based on arXiv:1610.07526

Dimuon excess at Z decay

Parameter	Value	Error
# signal events	32.31	± 10.87
# background events (overall)	1457.06	± 89.71
mass [GeV]	30.40	± 0.46
width (Breit-Wigner) [GeV]	1.78	± 1.14
width (Gaussian) [GeV]	0.74	± 0.10

Arno Heister, arXiv:1610.06536

- re-analyze the archived ALEPH data at the Z resonance
- dimuon excess observed in $Z \rightarrow b \bar{b} \mu^+ \mu^-$ at m_X = 30.40 GeV
- significance = 2.6σ

$$Br(Z \to b\bar{b}\mu^{+}\mu^{-}) \sim 1.1 \times 10^{-5}$$

$$\Gamma_{\rm tot}(X) = (1.78 \pm 1.14) \; {\rm GeV}$$

Minimum angle of b jet and μ

Arno Heister, arXiv:1610.06536

- Left: the minimum angle between a muon and the leading b jet < 15°
- \bullet Right: the angle of the other muon-jet combination is in the range of 5° and 20 °

Relative P_T of closest μ -jet pair

Arno Heister, arXiv:1610.06536

$$p_T^{\rm rel} \le 4 \text{ GeV}$$

$\cos \theta_{\mu}^{*}$ distribution

- peaks at $\cos\theta_{\mu}^{*} \approx \pm 1$
- would prefer X being a spin-1 particle
- close to the b jets

Short summary

• The distribution of dimuon invariant mass seems to imply a resonance X at 30 GeV with 2.6 σ significance

BR(
$$Z \rightarrow b\overline{b} \mu^{+}\mu^{-}$$
) ~ 10^{-5}
 $\Gamma(Z \rightarrow b\overline{b} \mu^{+}\mu^{-})$ ~ 1.7 GeV

- But, some kinematical distributions disfavor the resonance interpretation of the excess
- We assume the resonance interpretation and find its implication to the LHC phenomenology in a few simplified models

Simplified Model I

$$\mathcal{L}_{\text{scalar}} = s \sum_{f} g_{f}^{s} \bar{f} f,$$

$$\mathcal{L}_{\text{pseudoscalar}} = ia \sum_{f} g_{f}^{a} \bar{f} \gamma_{5} f,$$

$$\mathcal{L}_{\text{vector}} = -V_{\mu} \sum_{f} g_{f}^{V} \bar{f} \gamma^{\mu} f,$$

$$\mathcal{L}_{\text{axial vector}} = -A_{\mu} \sum_{f} g_{f}^{A} \bar{f} \gamma^{\mu} \gamma_{5} f.$$

- Assume X (=s,a,V,A) couples with b and μ
- X decays into a $b\overline{b}$ or $\mu^+\mu^-$ pair

$$\Gamma^X \sim 1 \text{ GeV for } g_f^s \sim 0.5 \text{ or } g_f^V \sim 0.6$$

• but may yield large decay widths for $Z \rightarrow 4b, 4\mu$

$$g_b^s \lesssim 0.7$$
 $g_b^V \lesssim 0.5$ from $Z \to 4b$
$$g_\mu^V \lesssim 0.03$$
 from $Z \to 4\mu$ in the $\mathrm{U}(1)_\mu$ - $\mathrm{U}(1)_ au$

Scalar Mediator Model

Scalar Mediator Model

Scalar Mediator Model

Vector Mediator Model

Vector Mediator Model

Vector Mediator Model

LHC Phenomenology (vector)

• the models can be constrained by DY, top decay, Z'bb production

Benchmark point I

$g_b^{Z'}$	$g_{\mu}^{Z'}$	$\Gamma^{Z'}(Z o bb\mu\mu)$	$\Gamma(Z' o bb,\mu\mu)$
0.1	0.1	2.72×10^{-5}	0.0322
$\sigma^{13}(\mu\mu)/\sigma^{1.96}(\mu\mu)$	$\Gamma(t o bWZ')$	$\sigma(pp o bbZ')$	${ m Br}(Z' o \mu\mu)$
714.5/55.8 pb	1.267×10^{-4}	136.1 pb	0.25

Benchmark point II

$g_b^{Z'}$	$g_{\mu}^{Z'}$	$\Gamma^{Z'}(Z o bb\mu\mu)$	$\Gamma(Z' o bb,\mu\mu)$
0.7	0.1	3.036×10^{-5}	1.19
$\sigma^{13}(\mu\mu)/\sigma^{1.96}(\mu\mu)$	$\Gamma(t o bWZ')$	$\sigma(pp o bbZ')$	${ m Br}(Z' o \mu\mu)$
920.5/71.1 pb	0.0062	6645 pb	0.0068

LHC Phenomenology (vector)

• the models can be constrained by DY, top decay, Z'bb production

Benchmark point I

$g_b^{Z'}$		$\Gamma^{Z'}(Z o bb\mu\mu)$	
0.1	0.1	2.72×10^{-5}	0.0322
$\sigma^{13}(\mu\mu)/\sigma^{1.96}(\mu\mu)$	$\Gamma(t o bWZ')$	$\sigma(pp o bbZ')$	${ m Br}(Z' o \mu\mu)$
714.5/55.8 pb	1.267×10^{-4}	136.1 pb	0.25

Benchmark point II

- too large Drell-Yan production cross section excludes this type of models
- similar features in the scalar, pseudoscalar, and axial-vector models

Simplified Model II

One way to avoid large DY cross section is to make Z' decouple from bb and introduce a new vectorlike down-type quark B

$$\mathcal{L} = g'_{\mu} Z'_{\rho} \bar{\mu} \gamma^{\rho} \mu + g_s G^a_{\mu} \bar{B} \gamma^{\mu} T^a B - \left[\frac{1}{2} g'_b Z'_{\rho} \bar{b} \gamma^{\rho} B + \frac{g_W \sin 2\theta_L}{4c_W} Z_{\mu} \bar{b} \gamma^{\mu} P_L B + h.c. \right]$$

- Z' decay: only $Z' \to \mu\mu$ is allowed kinematically by assuming $m_B \gg m_{Z'}$
- g'_{μ} is irrelevant to $\Gamma(Z \to bb\mu\mu)$ and is taken to be 0.01

Simplified Model II

• The dimuon excess could be explained for

$$\sin 2\theta_L = 0.5$$

$$m_B = 100 \sim 200 \text{ GeV}$$

$$g'_{\mu} = 0.5 \sim 3$$

Bench Mark Points (Model II)

• the models can be constrained by BB, bB, qB production at the LHC

Benchmark point III

g_b'	m_B	$\Gamma^{Z'}(Z o bb\mu\mu)$	$\Gamma(B o bZ')$
0.7	$110 \mathrm{GeV}$	2.75×10^{-5}	$3.4~{ m GeV}$
Br(B o bZ')	$\sigma^{13}(BB)/\sigma^{8}(BB)$	$\sigma^{13}(bB)/\sigma^{8}(bB)$	$\sigma^{13}(qB)/\sigma^{8}(qB)$
1.0	3942/1203 pb	1.68/0.89 pb	7.49/3.2 pb

Benchmark point IV

• signals would be bb+4 μ , bb+2 μ , bj+2 μ

Bench Mark Points (Model II)

• the models can be constrained by BB, bB, qB production at the LHC

Benchmark point III

g_b'	m_B	$\Gamma^{Z'}(Z o bb\mu\mu)$	$\Gamma(B o bZ')$
0.7	$110 \mathrm{GeV}$	2.75×10^{-5}	$3.4~{ m GeV}$
Br(B o bZ')	$\sigma^{13}(BB)/\sigma^{8}(BB)$	$\sigma^{13}(bB)/\sigma^{8}(bB)$	$\sigma^{13}(qB)/\sigma^{8}(qB)$
1.0	3942/1203 pb	1.68/0.89 pb	7.49/3.2 pb

Benchmark point IV

$$g_b' = m_B = \Gamma^{Z'}(Z \to bb\mu\mu) = \Gamma(B \to bZ')$$

 $2.0 = 180 = 2.35 \times 10^{-5} \text{ GeV} = 124.4 \text{ GeV}$
 $\text{Br}(B \to bZ') = \sigma^{13}(BB)/\sigma^8(BB) = \sigma^{13}(bB)/\sigma^8(bB) = \sigma^{13}(qB)/\sigma^8(qB)$
 $1.0 = 391/120 \text{ pb} = 0.21/0.1 \text{ pb} = 4.24/1.67 \text{ pb}$

- signals would be bb+4 μ , bb+2 μ , bj+2 μ
- too large BB production cross section (bb+4 μ) disfavors this model

 $\mathrm{U}(1)^{\prime}$ could be $\mathrm{U}(1)_{\mu}\text{-}\mathrm{U}(1)_{\tau}$

A real scalar ϕ is charged under both U(1)_Y and U(1)'

$$D_{\mu}\phi = \partial_{\mu}\phi - ig_1Y_{\phi}B_{\mu}\phi - ig'Y_{\phi}'Z_{\mu}'\phi$$

 ϕ couples with bb via a mixing with H

$$M_V^2 = \begin{pmatrix} g_1^2 \frac{v^2}{8} + g_1^2 Y_\phi^2 v_\phi^2 & -g g_1 \frac{v^2}{8} & g_1 g' Y_\phi Y_\phi' v_\phi^2 \\ -g g_1 \frac{v^2}{8} & g^2 \frac{v^2}{8} & 0 \\ g_1 g' Y_\phi Y_\phi' v_\phi^2 & 0 & g'^2 Y_\phi'^2 v_\phi^2 \end{pmatrix}$$

 $\mathrm{U}(1)^{\prime}$ could be $\mathrm{U}(1)_{\mu}\text{-}\mathrm{U}(1)_{\tau}$

A real scalar ϕ is charged under both U(1)_Y and U(1)'

$$D_{\mu}\phi = \partial_{\mu}\phi - ig_1Y_{\phi}B_{\mu}\phi - ig'Y_{\phi}'Z_{\mu}'\phi$$

 ϕ couples with bb via a mixing with H

$$\begin{split} M_V^2 = \begin{pmatrix} g_1^2 \frac{v^2}{8} + g_1^2 Y_\phi^2 v_\phi^2 & -g g_1 \frac{v^2}{8} & g_1 g' Y_\phi Y_\phi' v_\phi^2 \\ -g g_1 \frac{v^2}{8} & g^2 \frac{v^2}{8} & 0 \\ g_1 g' Y_\phi Y_\phi' v_\phi^2 & 0 & g'^2 Y_\phi'^2 v_\phi^2 \end{pmatrix} \\ & \sim \frac{1}{2} m_{Z'}^2 \qquad \Longrightarrow \qquad v_\phi = \frac{m_{Z'}}{\sqrt{2} g' Y_\phi'} \end{split}$$

 $\mathrm{U}(1)^\prime$ could be $\mathrm{U}(1)_\mu\text{-}\mathrm{U}(1)_\tau$

A real scalar ϕ is charged under both U(1)_Y and U(1)'

$$D_{\mu}\phi = \partial_{\mu}\phi - ig_1Y_{\phi}B_{\mu}\phi - ig'Y_{\phi}'Z_{\mu}'\phi$$

 ϕ couples with bb via a mixing with H

$$M_{V}^{2} = \begin{pmatrix} g_{1}^{2} \frac{v^{2}}{8} + g_{1}^{2} Y_{\phi}^{2} v_{\phi}^{2} & -gg_{1} \frac{v^{2}}{8} & g_{1} g' Y_{\phi} Y_{\phi}' v_{\phi}^{2} \\ -gg_{1} \frac{v^{2}}{8} & g^{2} \frac{v^{2}}{8} & 0 \end{pmatrix} \sim \sin \theta_{ZZ'} < 10^{-2}$$

$$g_{1} g' Y_{\phi} Y_{\phi}' v_{\phi}^{2} & 0 & g'^{2} Y_{\phi}'^{2} v_{\phi}^{2} \end{pmatrix} \longrightarrow \frac{Y_{\phi}}{Y_{\phi}'} \leq 3.2 \times 10^{-2} g'$$

 $\mathrm{U}(1)^{\prime}$ could be $\mathrm{U}(1)_{\mu}\text{-}\mathrm{U}(1)_{\tau}$

A real scalar ϕ is charged under both U(1)_Y and U(1)'

$$D_{\mu}\phi = \partial_{\mu}\phi - ig_1Y_{\phi}B_{\mu}\phi - ig'Y_{\phi}'Z_{\mu}'\phi$$

 ϕ couples with bb via a mixing with H

$$M_{V}^{2} = \begin{pmatrix} g_{1}^{2} \frac{v^{2}}{8} + g_{1}^{2} Y_{\phi}^{2} v_{\phi}^{2} & -g g_{1} \frac{v^{2}}{8} & q_{1} g' Y_{\phi} Y_{\phi}' v_{\phi}^{2} \\ -g g_{1} \frac{v^{2}}{8} & g^{2} \frac{v^{2}}{8} & 0 \\ g_{1} g' Y_{\phi} Y_{\phi}' v_{\phi}^{2} & 0 & g'^{2} Y_{\phi}'^{2} v_{\phi}^{2} \end{pmatrix} \sim \sin \theta_{ZZ'} < 10^{-2}$$

$$\longrightarrow \frac{Y_{\phi}}{Y_{\phi}'} \leq 3.2 \times 10^{-2} g'$$

$$g' \le 0.02 \implies \frac{Y'_{\phi}}{Y_{\phi}} \ge 1575$$

ullet The partial decay width strongly depends on the mass of ϕ

Kinematical distributions

- black line: muon's directions tend to be opposite to those of b jets
- other lines: milder, but still have larger angles than data

Kinematical distributions

- the relative transverse momentum of closest pair has a peak at more than 5 GeV
- only blue lines has peaks at $\cos \theta_u^* \approx \pm 1$

Dark matter

- Z' might decay into extra particles or dark matter candidates according to the model building
- Then some experimental bounds (DY, BB production) might be avoided, for example, by reducing the branching ratio of Z' to a muon pair
- However it does not help resolving the problem because it increases the total decay width of Z' and we cannot obtain the correct partial Z decay width
- Kinematical distributions are not affected by the extra decay channels and disfavor a resonance interpretation of X

Conclusions

- We consider three types of simplified models for a resolution of the dimuon excess observed in the re-analysis of archived ALEPH data
- One can find the parameter spaces satisfying the ALEPH data, but
- Model I predicts too large Drell-Yan prodcution rate at the LHC
- Model II predicts too large BB prodcution rate at the LHC
- Model III might be consistent with LHC data, but we need a large U(1)' charge for ϕ , which means that the model-building is not easy
- Kinematical distributions of the dimuon excess disfavor the interpretation of dimuon excess as a resonance