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Recap: Superfields and Superspace

scalar field ( ) fermion field 

Grassman variable (fermionic) 
auxiliary scalar field 

Vector Field fermion field 
3



Recap: Supersymmetric Invariant Lagrangians.

Lagrangian derived from Kahler, Superpotential functions of superfields is 
automatically supersymmetric invariant  

For a supersymmetric gauge theory,  the lagrangian is given by 

superpotential Kahler potential 
Field strength 

 superfield 
 (derived from V)
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Recap: Functions of Superfields 

Superpotential : is analytic function of superfields 
( or )

expand the superfields and do the grassman integration : 

(coefficient of is supersymmetric invariant ) 

(all possible yukawa interactions )
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Kahler Potential real function of superfields. 
Recap:

Take the product of the fields as before,  the exponential is simply : 

Grassman integration leaves just the coefficient of 
supersymmetric invariant (and power expand, chiral superfields around 

)

kinetic terms for matter particles, gauge interactions of matter particles and 
gaugino-fermion-scalar interactions

(WZ = Wess- Zumino Gauge) 
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differential operators in superspace: 
Recap: Field Strength Superfield is derived from the Vector Superfield  

And it leads to the lagrangian 
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What about the auxiliary fields : Using equations of motion, we find: 

The total supersymmetric invariant lagrangian  
is the sum of all the three parts we have seen so far.  
Notice that there is a part which is completely scalar:  

kinetic terms for gauge bosons and gauginos
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Supersymmetric QED 

no covariant  
derivative
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Feynman Rules in Supersymmetric QED  

Only one vertex in QED

QED

scalar QED 
photino-selectron-electron

quartic coupling of the scalar particles of the 

 same strength as gauge coupling 
the selectron mass is protected in  this theory  

from large radiative corrections
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The MSSM is generalisation of the Supersymmetric 
QED to the  Standard Model gauge group 

The lagrangian is derived in a similar way using 
the three parts from kahler potential, superpotential and 

the field strength superpotential. 

However with one difference : supersymmetry is broken 
in terms of auxiliary fields, supersymmetry is spontaneously  

broken if either of the F or D fields gets a VEV 

however we cannot incorporate spontaneous susy breaking in MSSM  
as they predict sum rules like  

these are violated phenomenologically 
so instead of looking for a detailed model of supersymmetry breaking,  

we parameterise all the breaking effects in terms of  
soft supersymmetry breaking terms.
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So the total lagrangian of the MSSM is given by  

the kahler potential for SM gauge group over all matter fields  
and  Vector fields 

Similarly for each Vector superfield, field strength superfields  
give kinetic terms for gauge bosons and gauginos 



Recap: particle spectrum of the MSSM  

The minimal supersymmetric extension of the Standard Model is built by replacing every stan-

dard model matter field by a chiral superfield and every vector field by a vector superfield. Thus

the existing particle spectrum of the Standard Model is doubled. The particle spectrum of the

MSSM and their transformation properties under GSM is given by,

Qi ≡

⎛

⎝

uLi ũLi

dLi d̃Li

⎞

⎠ ∼
(

3, 2,
1

6

)

U c
i ≡

(

uci ũci

)

∼
(

3̄, 1, −
2

3

)

Dc
i ≡

(

dci d̃ci

)

∼
(

3̄, 1,
1

3

)

Li ≡

⎛

⎝

νLi ν̃Li

eLi ẽLi

⎞

⎠ ∼
(

1, 2, −
1

2

)

Ec
i ≡

(

eci ẽci

)

∼ (1, 1, 1)

(14)

The scalar partners of the quarks and the leptons are typically named as ‘s’quarks and ‘s’leptons.

Together they are called sfermions. For example, the scalar partner of the top quark is known as

the ‘stop’. In the above, these are represented by a ‘tilde’ on their SM counterparts. As in the

earlier case, the index i stands for the generation index.

There are two distinct features in the spectrum of MSSM : (a) Note that we have used the

conjugates of the right handed particles, instead of the right handed particles themselves. There is

no additional conjugation on the superfield itselves, the c in the superscript just to remind ourselves

that this chiral superfield is made up of conjugates of SM quantum fields. In eq.(14), uc = u†R

and ũc = ũ⋆R. This way of writing down the particle spectrum is highly useful for reasons to

be mentioned later in this section. Secondly (b) At least two Higgs superfields are required to

complete the spectrum - one giving masses to the up-type quarks and the other giving masses to

the down type quarks and charged leptons. As mentioned earlier, this is the minimal number of

Higgs particles required for the model to be consistent from a quantum field theory point of view6.

These two Higgs superfields have the following transformation properties under GSM :

H1 ≡

⎛

⎝

H0
1 H̃0

1

H−
1 H̃−

1

⎞

⎠ ∼
(

1, 2, −
1

2

)

H2 ≡

⎛

⎝

H+
2 H̃+

2

H0
2 H̃0

2

⎞

⎠ ∼
(

1, 2,
1

2

)

(15)

6 The Higgs field has a fermionic partner, higgsino which contributes to the anomalies of the SM. At least two such
fields with opposite hyper-charges (U(1)Y ) should exist to cancel the anomalies of the Standard Model.
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dLi d̃Li

⎞

⎠ ∼
(

3, 2,
1

6

)

U c
i ≡

(

uci ũci
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The Higgsinos are represented by a˜on them. This completes the matter spectrum of the MSSM.

Then there are the gauge bosons and their super particles. Remember that in supersymmetric

theories, the gauge symmetry is imposed by the transformations on matter superfields as :

Φ′ = eiΛltlΦ (16)

where Λl is an arbitrary chiral superfield and tl represent the generators of the gauge group which

are l in number and the index l is summed over7. The gauge invariance is restored in the kinetic

part by introducing a (real) vector superfield, V such that the combination

Φ†egV Φ (17)

remains gauge invariant. For this to happen, the vector superfield V itselves transforms under the

gauge symmetry as

δV = i(Λ− Λ†) (18)

The supersymmetric invariant kinetic part of the lagrangian is given by:

Lkin =

∫

dθ2dθ̄2Φ†egV Φ = Φ†egV Φ|θθθ̄θ̄ (19)

In the MSSM, corresponding to three gauge groups of the SM and for each of their corresponding

gauge bosons, we need to add a vector superfield which transforms as the adjoint under the gauge

group action. Each vector superfield contains the gauge boson and its corresponding super partner

called gaugino. Thus in MSSM we have the following vector superfields and their corresponding

transformation properties under the gauge group, completing the particle spectrum of the MSSM:

V A
s :

(

GµA G̃A
)

∼ (8, 1, 0)

V I
W :

(

W µI W̃ I
)

∼ (1, 3, 0)

VY :
(

Bµ B̃
)

∼ (1, 1, 0) (20)

The G’s (G and G̃) represent the gluonic fields and their superpartners called gluinos, the index A

runs from 1 to 8. The W ’s are the SU(2) gauge bosons and their superpartners ‘Winos’, the index

I taking values from 1 to 3 and finally Bs represents the U(1) gauge boson and its superpartner

‘Bino’. Together all the superpartners of the gauge bosons are called ‘gauginos’. This completes

the particle spectrum of the MSSM.

7 To be more specific, tl is just a number for the abelian groups. For non-abelian groups, tl is a matrix and so is Λl,
with Λij = tlijΛl Note that V is also becomes a matrix in this case.
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matter particles 

Higgs particles gauge bosons 
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The superpotential is a gauge invariant analytic function of the 
superfields   

Unlike SM, lepton and baryon number are  
no longer conserved symmetries Impose R parity 

u u

u

d

λ
′′

s̃

λ′

l̄

ū

FIG. 1: A sample diagram showing the decay of the proton in the presence of R-parity violating couplings.

such extremely small values.

A more natural way of dealing with such small numbers for these couplings would be to set

them to be zero. This can be arrived at by imposing a discrete symmetry on the lagrangian called

R-parity. R-parity has been originally introduced as a discrete R-symmetry 16 by Ferrar and Fayet

[23] and then later realised to be of the following form by Ferrar and Weinberg [24] acting on the

component fields:

Rp = (−1)3(B−L)+2s, (35)

where B and L represent the Baryon and Lepton number respectively and s represents the spin of

the particle. Under R-parity the transformation properties of various superfields can be summarised

as:

{V A
s , V I

w , Vy} → {V A
s , V I

w , Vy}

θ → −θ⋆

{Qi, U
c
i ,D

c
i , Li, E

c
i } → −{Qi, U

c
i ,D

c
i , Li, E

c
i }

{H1,H2} → {H1,H2} (36)

16 R-symmetries are symmetries under which the θ parameter transform non-trivially.
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Avoid diagrams of this type which 
reduce the proton life time to 10^(-13) secs 
 for O(1) couplings and TeV SUSY partners  

R-parity assures that 
every vertex has atleast  

two superpartners

Rp = (�1)(3B+L+2S)



14

SM (2HDM)   
Yukawa coupling squark-quark-Higgsino charged Higgs 

 interaction

vertices from superpotential: 



Finally, 

M1B̃B̃,M2W̃IW̃I ,M3G̃AG̃A,

m2
Qij

Q̃†
i Q̃j ,m

2
uij

ũc?
i ũ

c
j ,m

2
dij

d̃c
?

i d̃
c
j ,m

2
Lij

L̃†
i L̃j ,m

2
eij ẽ

c?
i ẽ

c
j ,m

2
H1

H†
1H1,m

2
H2

H†
2H2.

Au
ijQ̃iũ

c
jH2, A

d
ijQ̃id̃

c
jH1, A

e
ijL̃iẽ

c
jH1

gaugino masses 

scalar mass  
terms

trilinear couplings

bilinear couplings BH1H2

A total of about 105 parameters 
15

is given by the terms discussed yesterday  

mass terms for super partners and  dimensional couplings. 
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Electroweak Symmetry breaking and minimisation conditions 

so far we have built the MSSM lagrangian  
keeping the SM gauge symmetry in tact. 

We would like to incorporate the Higgs mechanism  
in the MSSM to break the electroweak symmetry 

and give masses to fermions and SM gauge bosons.

For that we will concentrate on the Higgs potential  
in the scalar potential of the MSSM. The scalar  

potential of the MSSM is given by : 



Hu =

✓
H+

u

H0
u

◆
Hd =

✓
H0

d

H�
d

◆

YHu = +1 YHd = �1
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Electroweak Symmetry breaking and minimisation conditions 
a kind of two higgs doublet model 

potential should be bounded from below 
at least one of the higgs mass squared should be negative 



andwhere
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Electroweak Symmetry breaking and minimisation conditions 

Concentrating on the neutral part : 

If these conditions are satisfied, 
 electroweak symmetry is broken in MSSM 
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Mass spectrum  of MSSM partners 

Neutral parts of gauginos and Higgsinos mix to form Neutralinos 

these are majorana particles
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The chargino mass matrix : 

charginos are Dirac Particles. 

The sfermion sector :  6X6 mass matrices 
From the total scalar potential, the mass matrix for these sfermions can be derived using standard

definition given as

m2
ij =

⎛

⎜

⎝

∂2V
∂φi∂φ⋆

j

∂2V
∂φi∂φj

∂2V
∂φ⋆

i ∂φ
⋆
j

∂2V
∂φ⋆

i ∂φj

⎞

⎟

⎠
(47)

Using this for sfermions, we have :

M2
f̃

=

(

m2
f̃LL

m2
f̃LR

m2 †

f̃LR
m2

f̃RR

)

, (48)

where each of the above entries represents 3×3 matrices in the generation space. More specifically,

they have the form (as usual, i, j are generation indices):

m2
f̃LiLj

= M2
f̃LiLj

+m2
f δij +M2

Z cos 2β(T3 + sin2 θWQem)δij

m2
f̃LiRj

=
(

(Y A
f ·v2v1 −mfµ

tanβ
cot β ) for f =e,d

u

)

δij

m2
f̃RR

= M2
f̃Rij

+
(

m2
f +M2

Z cos 2β sin2 θWQem
)

δij (49)

In the above, M2
f̃L

represents the soft mass term for the corresponding fermion (L for left, R for

right), T3 is the eigenvalue of the diagonal generator of SU(2), mf is the mass of the fermion with

Y and Qem representing the hypercharge and electromagnetic charge (in units of the charge of the

electron ) respectively. The sfermion mass matrices are hermitian and are thus diagonalised by a

unitary rotation, Rf̃R
†

f̃
= 1:

Rf̃ ·Mf̃ · R
†

f̃
= Diag.(mf̃1

,mf̃2
, . . . ,mf̃6

) (50)

4. The Higgs sector

Now let us turn our attention to the Higgs fields. We will use again use the standard formula of

eq.(47), to derive the Higgs mass matrices. The eight Higgs degrees of freedom form a 8× 8 Higgs

mass matrix which breaks down diagonally in to three 2× 2 mass matrices19.

The mass matrices are divided in to charged sector, CP odd neutral and CP even neutral. This

helps us in identifying the goldstone modes and the physical spectrum in an simple manner. Before

writing down the mass matrices, let us first define the following parameters :

m2
1 = m2

H1
+ µ2, m2

2 = m2
H2

+ µ2, m2
3 = Bµµ.

19 The discussion in this section closely follows from the discussion presented in Ref.[30]
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m2
1 = m2

H1
+ µ2, m2

2 = m2
H2

+ µ2, m2
3 = Bµµ.

19 The discussion in this section closely follows from the discussion presented in Ref.[30]
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Higgs Spectrum 

two Higgs doublets -> eight degrees of freedom
three goldstone bosons -> five physical Higges. 

three higgs mass matrices: charged, 
 CP odd (imaginary neutral ) and CP even (real neutral) 

In terms of these parameters, the various mass matrices and the corresponding physical states

obtained after diagonalising the mass matrices are given below:

Charged Higgs and Goldstone Modes:

(

H+
1 H+

2

)

⎛

⎝

m2
1 +

1
8(g

2
1 + g22)(v

2
1 − v22) +

1
4g

2
2v

2
2 m2

3 +
1
4g

2
2v1v2

m2
3 +

1
4g

2
2v1v2 m2

2 − 1
8(g

2
1 + g22)(v

2
1 − v22) +

1
4g

2
2v

2
2

⎞

⎠

⎛

⎝

H−
1

H−
2

⎞

⎠

(51)

Using the minimisation conditions (43), this matrix becomes,

(

H+
1 H+

2

)

(
m2

3

v1v2
+

1

4
g22)

⎛

⎝

v22 v1v2

v1v2 v21

⎞

⎠

⎛

⎝

H−
1

H−
2

⎞

⎠ (52)

which has determinant zero leading to the two eigenvalues as :

m2
G± = 0

m2
H± =

(

m2
3

v1v2
+

1

4
g22

)

(v21 + v22), (53)

=
2m2

3

sin2β
+M2

W (54)

where G± represents the Goldstone mode. The physical states are obtained just by rotating the

original states in terms of the H1, H2 fields by an mixing angle. The mixing angle in the present

case (in the unitary gauge) is just tanβ:
⎛

⎝

H±

G±

⎞

⎠ =

⎛

⎝

sinβ cosβ

−cosβ sinβ

⎞

⎠

⎛

⎝

H±

G±

⎞

⎠ (55)

CP odd Higgs and Goldstone Modes:

Let us now turn our attention to the CP-odd Higgs sector. The mass matrices can be written in a

similar manner but this time for imaginary components of the neutral Higgs.

(

ImH0
1 ImH0

2

)

⎛

⎝

m2
1 +

1
8(g

2
1 + g22)(v

2
1 − v22) m2

3

m2
3 m2

2 − 1
8 (g

2
1 + g22)(v

2
1 − v22)

⎞

⎠

⎛

⎝

ImH0
1

ImH0
2

⎞

⎠ (56)

As before, again using the minimisation conditions, this matrix becomes,

(

ImH0
1 ImH0

2

)

m2
3

⎛

⎝

v2/v1 1

1 v1/v2

⎞

⎠

⎛

⎝

ImH0
1

ImH0
2

⎞

⎠ (57)

which has determinant zero leading to the two eigenvalues as :

m2
G0 = 0

m2
A0 =

(

m2
3

v1v2

)

(v21 + v22) =
2m2

3

sin2β
(58)
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using the minimisation conditions

In terms of these parameters, the various mass matrices and the corresponding physical states

obtained after diagonalising the mass matrices are given below:

Charged Higgs and Goldstone Modes:

(

H+
1 H+

2

)

⎛

⎝

m2
1 +

1
8(g

2
1 + g22)(v

2
1 − v22) +

1
4g

2
2v

2
2 m2

3 +
1
4g

2
2v1v2

m2
3 +

1
4g

2
2v1v2 m2

2 − 1
8(g

2
1 + g22)(v

2
1 − v22) +

1
4g

2
2v

2
2

⎞

⎠

⎛

⎝

H−
1

H−
2

⎞

⎠

(51)

Using the minimisation conditions (43), this matrix becomes,

(

H+
1 H+

2

)

(
m2

3

v1v2
+

1

4
g22)

⎛

⎝

v22 v1v2

v1v2 v21

⎞

⎠

⎛

⎝

H−
1

H−
2

⎞

⎠ (52)

which has determinant zero leading to the two eigenvalues as :

m2
G± = 0

m2
H± =

(

m2
3

v1v2
+

1

4
g22

)

(v21 + v22), (53)

=
2m2

3

sin2β
+M2

W (54)

where G± represents the Goldstone mode. The physical states are obtained just by rotating the

original states in terms of the H1, H2 fields by an mixing angle. The mixing angle in the present

case (in the unitary gauge) is just tanβ:
⎛

⎝

H±

G±

⎞

⎠ =

⎛

⎝

sinβ cosβ

−cosβ sinβ

⎞

⎠

⎛

⎝

H±

G±

⎞

⎠ (55)

CP odd Higgs and Goldstone Modes:

Let us now turn our attention to the CP-odd Higgs sector. The mass matrices can be written in a

similar manner but this time for imaginary components of the neutral Higgs.

(

ImH0
1 ImH0

2

)

⎛

⎝

m2
1 +

1
8(g

2
1 + g22)(v

2
1 − v22) m2

3

m2
3 m2

2 − 1
8 (g

2
1 + g22)(v

2
1 − v22)

⎞

⎠

⎛

⎝

ImH0
1

ImH0
2

⎞

⎠ (56)

As before, again using the minimisation conditions, this matrix becomes,

(

ImH0
1 ImH0

2

)

m2
3

⎛

⎝

v2/v1 1

1 v1/v2

⎞

⎠

⎛

⎝

ImH0
1

ImH0
2

⎞

⎠ (57)

which has determinant zero leading to the two eigenvalues as :

m2
G0 = 0

m2
A0 =

(

m2
3

v1v2

)

(v21 + v22) =
2m2

3

sin2β
(58)
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In terms of these parameters, the various mass matrices and the corresponding physical states

obtained after diagonalising the mass matrices are given below:

Charged Higgs and Goldstone Modes:

(

H+
1 H+

2

)

⎛

⎝

m2
1 +

1
8(g

2
1 + g22)(v

2
1 − v22) +

1
4g

2
2v

2
2 m2

3 +
1
4g

2
2v1v2

m2
3 +

1
4g

2
2v1v2 m2

2 − 1
8(g

2
1 + g22)(v

2
1 − v22) +

1
4g

2
2v

2
2

⎞

⎠

⎛

⎝

H−
1

H−
2

⎞

⎠

(51)

Using the minimisation conditions (43), this matrix becomes,

(

H+
1 H+

2

)

(
m2

3

v1v2
+

1

4
g22)

⎛

⎝

v22 v1v2

v1v2 v21

⎞

⎠

⎛

⎝

H−
1

H−
2

⎞

⎠ (52)

which has determinant zero leading to the two eigenvalues as :

m2
G± = 0

m2
H± =

(

m2
3

v1v2
+

1

4
g22

)

(v21 + v22), (53)

=
2m2

3

sin2β
+M2

W (54)

where G± represents the Goldstone mode. The physical states are obtained just by rotating the

original states in terms of the H1, H2 fields by an mixing angle. The mixing angle in the present

case (in the unitary gauge) is just tanβ:
⎛

⎝

H±

G±

⎞

⎠ =

⎛

⎝

sinβ cosβ

−cosβ sinβ

⎞

⎠

⎛

⎝

H±

G±

⎞

⎠ (55)

CP odd Higgs and Goldstone Modes:

Let us now turn our attention to the CP-odd Higgs sector. The mass matrices can be written in a

similar manner but this time for imaginary components of the neutral Higgs.

(

ImH0
1 ImH0

2

)

⎛

⎝

m2
1 +

1
8(g

2
1 + g22)(v

2
1 − v22) m2

3

m2
3 m2

2 − 1
8 (g

2
1 + g22)(v

2
1 − v22)

⎞

⎠

⎛

⎝

ImH0
1

ImH0
2

⎞

⎠ (56)

As before, again using the minimisation conditions, this matrix becomes,

(

ImH0
1 ImH0

2

)

m2
3

⎛

⎝

v2/v1 1

1 v1/v2

⎞

⎠

⎛

⎝

ImH0
1

ImH0
2

⎞

⎠ (57)

which has determinant zero leading to the two eigenvalues as :

m2
G0 = 0

m2
A0 =

(

m2
3

v1v2

)

(v21 + v22) =
2m2

3

sin2β
(58)
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at tree level the lightest Higgs mass upper limit is

22

Summary of Higgs mass spectrum at tree level 

tree level catastrophe !!



Lightest Higgs mass @ 1-loop (top-stop enhanced) 

in the limit of 
no-mixing

23

Ellis, Ridolfi, Zwirner, 
Haber-Hempfling, 

Yanagida et. al 



where

in the case of non-zero mixing the 
correction is 

1-loop correction adds ~20 GeV to the tree-level, assuming the 
sparticles are < 1 TeV (in no-mixing scenario).

Haber, Hempfling and Hoang,9609331
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Effective potential methods are more useful 

diagonalizing

25



dominant 2-loop contribution due to top-stop loops

dominant 2-loop correction increases the lightest Higgs mass <10 
GeV to the tree-level, assuming the sparticles are < 1 TeV (in no-

mixing scenario).

One loop terms + 

+O(G2
Fm

6
t )

Heinemeyer et.al, 9812472
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3-loop correction

calculated up to  
keeping only the leading terms

no mixing in the stop sector

Harlander et al. ‘08
Martin ‘07

Most Publicly available spectrum generators  calculate 
the CP-even Higgs spectrum  

at the 2-loop order.

27
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Theoretical Status  of the Higgs mass computation 

3

the two-loop level obtained with the FD approach in the
OS scheme, while (∆M2

h)
RGE are the leading and sub-

leading logarithmic contributions (either up to a certain
loop order or summed to all orders) obtained in the RGE
approach, as evaluated via Eq. (2). In all terms of Eq. (4)
the top-quark mass is parametrised in terms of mt; the
relation between XMS

t and XOS
t is given by

XMS
t = XOS

t [1 + 2L (αs/π − (3αt)/(16π))] (5)

up to non-logarithmic terms, and there are no logarithmic
contributions in the relation between MMS

S and MOS
S .

Since the higher-order corrections beyond 2-loop order
have been derived under the assumption MA ≫ MZ , to
a good approximation these corrections can be incorpo-
rated as a shift in the prediction for the φ2φ2 self-energy
(where ∆M2

h enters with a coefficient 1/ sin2β). In this
way the new higher-order contributions enter not only
the prediction for Mh, but also all other Higgs sector
observables that are evaluated in FeynHiggs. The latest
version of the code, FeynHiggs2.10.0, which is available
at feynhiggs.de, contains those improved predictions as
well as a refined estimate of the theoretical uncertainties
from unknown higher-order corrections. Taking into ac-
count the leading and subleading logarithmic contribu-
tions in higher orders reduces the uncertainty of the re-
maining unknown higher-order corrections. Accordingly,
the estimate of the uncertainties arising from corrections
beyond two-loop order in the top/stop sector is adjusted
such that the impact of replacing the running top-quark
mass by the pole mass (see Ref. [7]) is evaluated only for
the non-logarithmic corrections rather than for the full
two-loop contributions implemented in FeynHiggs. Fur-
ther refinements of the RGE resummed result are pos-
sible, in particular extending the result to the case of
a large splitting between the left- and right-handed soft
SUSY-breaking terms in the scalar top sector [25] and
to the region of small values of MA (close to MZ) as
well as including the corresponding contributions from
the (s)bottom sector. We leave those refinements for fu-
ture work.

III. NUMERICAL ANALYSIS

In this section we briefly analyze the phenomenologi-
cal implications of the improved Mh prediction for large
stop mass scales, as evaluated with FeynHiggs2.10.0.
The upper plot of Fig. 1 shows Mh as a function of
MS for Xt = 0 and Xt/MS = 2 (which corresponds
to the minimum and the maximum value of Mh as a
function of Xt/MS , respectively; here and in the fol-
lowing Xt denotes XOS

t ). The other parameters are
MA = M2 = µ = 1000 GeV, mg̃ = 1600 GeV (M2 is the
SU(2) gaugino mass term, µ the Higgsino mass parameter
and mg̃ the gluino mass) and tanβ = 10. The plot shows
for the two values of Xt/MS the fixed-order FD result
containing corrections up to the two-loop level (labelled
as “FH295”, which refers to the previous version of the
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A0 = 0, tanβ = 10

FIG. 1. Upper plot: Mh as a function ofMS for Xt = 0 (solid)
and Xt/MS = 2 (dashed). The full result (“LL+NLL”) is
compared with results containing the logarithmic contribu-
tions up to the 3-loop, . . . 7-loop level and with the fixed-order
FD result (“FH295”). Lower plot: comparison of FeynHiggs
(red) with H3m (blue). In green we show the FeynHiggs 3-loop
result at O(αtα

2
s) (full) as dashed (solid) line.

code FeynHiggs) as well as the latter result supplemented
with the analytic solution of the RGEs up to the 3-loop,
. . . 7-loop level (labelled as “3-loop” . . . “7-loop”). The
curve labelled as “LL+NLL” represents our full result
where the FD contribution is supplemented by the lead-
ing and next-to-leading logarithms summed to all orders.
One can see that the impact of the higher-order logarith-
mic contributions is relatively small for MS = O(1 TeV),
while large differences between the fixed-order result and
the improved results occur for large values of MS . The 3-
loop logarithmic contribution is found to have the largest
impact in this context, but forMS

>∼ 2500(6000) GeV for
Xt/MS = 2(0) also contributions beyond 3-loop are im-
portant. A convergence of the higher-order logarithmic
contributions towards the full resummed result is visible.
At MS = 20 TeV the difference between the 7-loop result
and the full resummed result is around 900(200) MeV for
Xt/MS = 2(0). The corresponding deviations stay below
100 MeV for MS

<∼ 10 TeV. The plot furthermore shows
that for MS ≈ 10 TeV (and the value of tanβ = 10
chosen here) a predicted value of Mh of about 126 GeV
is obtained even for the case of vanishing mixing in the
scalar top sector (Xt = 0). Since the predicted value of
Mh grows further with increasing MS it becomes appar-

T.Hahn et. al, 

arXiv: 1312.4937.
Buchmueller et. al, 
arXiv:1312.5233
Draper et. al
1312.5743
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Figure 1: Breakdown of the uncertainties for a 125 GeV Higgs mass as a function of the (degenerate) superparticle
masses m

SUSY

. The Higgs mass has been kept fixed at 125 GeV by varying either the stop mixing (with fixed
tan� = 20 for m

SUSY

< 20 TeV, left panel of the plot) or tan� (with vanishing stop mixing for m
SUSY

> 20 TeV,
right panel of the plot. Note that for m

SUSY

< 2 TeV (the gray region) the 125 GeV value for the Higgs mass cannot
be reproduced anymore but is within the theoretical uncertainties. The black “total” line is the linear sum of the
theoretical uncertainties from SM, SUSY and EFT corrections (in dashed lines). The dotted line �exp

mt
corresponds

to the 2� experimental uncertainty on the top mass.

2. SUSY uncertainties : from missing higher order corrections in the matching with the SUSY
theory at the high scale;

3. EFT uncertainties : from missing higher order corrections from higher dimensional operators
in the SM EFT and other EW suppressed corrections O(v2/m2

SUSY).

Fig. 1 summarizes the importance of the individual sources of uncertainty as a function of the
SUSY scale. For definiteness we took the superpartners to be degenerate with mass mSUSY, the
Higgs mass has been kept fixed at 125 GeV by varying either the stop mixing (with fixed tan � = 20
for mSUSY < 20 TeV) or tan � (with vanishing stop mixing for mSUSY > 20 TeV). We will now
discuss these uncertainties individually.

SM uncertainties

As described in the previous section, in our computation we employed full SM three-loop RGE
and two-loop matching conditions at the EW scale to relate the pole masses mh and mt and the
gauge couplings to the MS running couplings at the high scale. We also included the 3-loop O(↵3

s)
corrections to the top mass matching. This is expected to be the leading higher-order correction
and the missing 3-loop matching and 4-loop running corrections are not expected to give larger

7

SUSY-HD 

arxiv 1504.05200
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Figure 3: Comparison between the EFT computation (lower blue band) and two existing codes: FeynHiggs [41]
and Suspect [39]. We used a degenerate SUSY spectrum with mass m

SUSY

in the DR-scheme with tan� = 20.
The plot on the left is mh vs m

SUSY

for vanishing stop mixing. The plot on the right is mh vs Xt/mSUSY

for
m

SUSY

= 2 TeV. On the left plot the instability of the non-EFT codes at large m
SUSY

is visible.

due to the missing 2-loop corrections in the top mass7. Note that, as discussed in the previous
section, the uncertainty in the EFT approach is dominated by the 3-loop top matching conditions,
the 2-loop ones are thus mandatory in any precision computation of the Higgs mass. We checked
that after their inclusion, the FeynHiggs code would perfectly agree with the EFT computation
at zero squark mixing. At maximal mixing the disagreement would be reduced to 4 GeV, which
should be within the expected theoretical uncertainties of the diagrammatic computation.

For comparison, in fig. 3 we also show the results obtained with a di↵erent code (Suspect [39])
which uses a diagrammatic approach but unlike FeynHiggs, does not perform RGE improvement
and its applicability becomes questionable for mSUSY in the multi TeV region.

3 Results

After having seen that the EFT computation is reliable for most of the relevant parameter space
we present here some of the implications for the supersymmetric spectrum. Given the generic
agreement with previous computations using the same approach, we tried to be as complemen-
tary as possible in the presentation of our results, putting emphasis on the improvements of our
computation and novel analysis in the EFT approach.

3.1 Where is SUSY?

Fig. 4 represents the parameter space compatible with the experimental value of the Higgs mass in
the plane of (m1/2,m0) for zero (blue) and increasing values (red) of the stop mixing. For simplicity
we took degenerate scalar masses m0 as well as degenerate fermion masses m1/2 = M1,2,3 = µ. All

7It was brought to our attention that a similar observation was also made in [42].
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Conclusions

• The discovery of the Higgs and the accurate measurement of its mass have 
focused the theoristsʼ attention on precision calculations in the Higgs sector

• The accuracy of the prediction for MH  from the SM Lagrangian parameters      
(or rather the extraction of said parameters from the known value of MH )          
is now of order (0.1–0.2)%, comparable with the experimental accuracy

• In the MSSM, the measured Higgs mass calls for large radiative corrections;  
the accuracy of Higgs-mass calculations appears to be still of order “few %” 

• Several hints point to scenarios with heavy superpartners; in that case, large 
logarithmic corrections need to be resummed in an effective-theory approach

• If the EFT valid at the weak scale is the SM, part of the corrections can be 
borrowed from the SM calculation, reducing the uncertainty to less than 1%

• Of course, much more interesting phenomenology in scenarios where the EFT 
valid at the weak scale is not  the SM  (e.g., light -inos and/or light THDM)

Slavich, SUSY 2015 
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For zero mixing, we need multi TeV Stops !!! 

Other option is to have maximal mixing :
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Is the universe  in a critical parameter SUSY parameter space ? 

Stability of MSSM vacuum analysis with four fields, the two Higgs fields and 
the  stop fields ( considering they are light ) 

Chowdhury,

 Godbole, Mohan, 

Vempati, 

arXiv: 1310.1932

JHEP 

SUSEFLAV  & 

Cosmo Transitions 
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in [49, 50]. In the semi-classical limit this quantity is given by

Γ

V
= Ae−S[φ̄]/! , (3.1)

where V corresponds to the volume, S[φ̄] is the Euclidean action evaluated on the bounce

configuration and Γ is the width associated with the tunneling of a particle from the false

vacuum to the deeper vacuum. The prefactor A is roughly of the order of the fourth power of

the scale associated with the potential and we set it to (100 GeV)4 [24]. The condition that

the lifetime of the false vacuum be larger than the age of the universe implies that Γ/V must

be smaller than the fourth power of the Hubble constant (H0 ∼ 1.44× 10−42 GeV). This

can be translated to a condition on the value of the action such that S[φ̄]/! ! 404 [24, 51].

The scalar potential of the MSSM consists of squared, cubic and quartic terms of the

various scalar fields and is therefore quite complicated. For a physically viable spectrum,

the bi-linear terms (quadratic terms of the potential) must be positive4 while the quar-

tic terms always contribute positively to the potential. The trilinear terms which can be

negative are therefore responsible for the formation of additional minima other than the

EWSB minimum.5 If the bilinear terms are large then they tend to mitigate the destabi-

lizing effect of the trilinear terms. One therefore does not have to consider the full MSSM

potential but rather only the fields that have lighter masses and large trilinear couplings.

For the case of stops the trilinear terms are also enhanced by the relatively large value of

the Yukawa couplings.

We now proceed to a description of the potential and a discussion of the results in

detail. For simplicity let us first consider the potential consisting only of (Hu, t̃L, t̃R).

3.1 Three field scalar potential in MSSM

The tree-level scalar potential in MSSM in the Hu, t̃L and t̃R field directions is

V3 =
(
m2

Hu
+ µ2

)
|Hu|2 +m2

t̃L
|t̃L|2 +m2

t̃R

∣∣t̃R
∣∣2 +

(
ytAtH

∗
u t̃Lt̃R + c.c.

)

+ y2t
(
|t̃Lt̃R|2 + |Hut̃L|2 + |Hut̃R|2

)
+

g21
8

(
|Hu|2 +

1

3
|t̃L|2 −

4

3
|t̃R|2

)2

+
g22
8

(
|Hu|2 − |t̃L|2

)2
+

g23
6

(
|t̃L|2 − |t̃R|2

)2
. (3.2)

The first observation that one can make is that this potential is not unbounded from below

(UFB) in any of the field directions. This is due to the F -terms that contribute positively

to the potential for nonzero values of the field. The second observation is, as mentioned

earlier, one can always choose the phases of the fields in such a way that the trilinear term(
ytAtH∗

u t̃Lt̃R + c.c.
)
contributes negatively to the potential. Thus it is the only term which

is responsible for the formation of new CCB minima.

Before we turn to a discussion of the numerical analysis we first give a qualitative

understanding of the development of CCB minima. In the D-flat direction the D terms,

4The Higgs sector is an exception where the bi linear term proportional to Bµ is negative which is

required for symmetry breaking.
5We note that large values of At can have other interesting consequences as suggested in ref. [52].
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Figure 2. Left: the variation of mh against A2
t/M

2
# for three field potential. Right: the variation

of 3(m2
t̃L

+m2
t̃R
) with A2

t + 3µ2 for the three field. The dashed (magenta) line corresponds to the
analytic bound and the dot-dashed (cyan) line corresponds to the empirical bound. Points that
correspond to the EWSB vacuum being unstable are given in red (checkered), meta-stable in green
(stars) and stable blue (vertical lines).

CCB minimum being the global minimum; the green points represent those points of the

parameter space where the time associated with the transition from the EWSB minimum

to the CCB minimum is greater than the age of the universe(meta-stable) and red points

are those where this time is less than the age of the universe(unstable). We see from

figure 2, the region of absolute stability is slightly diminished in comparison to the bound

given in eq. (3.4). The result quoted earlier (derived by looking at the most likely direction

of formation of CCB minima (D-flat direction)) is only an approximate result since we

effectively reduce the 3 dimensional problem to a one dimensional problem. We also note

that the regions of meta-stability do not extend to very large values of At. We therefore

find stronger bounds than the empirical bound found in ref. [24] for the constrained MSSM

(cMSSM). To emphasize this point we show in the right hand side of figure 2 a plot similar

to the one found in ref. [24]. The dashed (magenta) line in this plot corresponds to the

analytic bound

A2
t + 3µ2 < 3(m2

t̃L
+m2

t̃R
) , (3.7)

and the dot-dashed (cyan) line corresponds to the empirical bound

A2
t + 3µ2 < 7.5(m2

t̃L
+m2

t̃R
) . (3.8)

We see that regions of meta-stability do not extend to the empirical bound.

Our results do not have a strong dependence on tanβ. It can be shown that for

moderately large tanβ, the tanβ dependence of the coefficients in the potential factor out.

Note that the potential V3 has no µ dependence. We further checked that the results are

insensitive to the variation of mA between 500 − 2000GeV. We now proceed to describe

our results when the fourth Hd field is added to the potential.

– 7 –

analytical bound 

emperical bound 

Full Four Field Numerical 

Analysis 
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