Practical Statistics for Particle Physicists

Youngjoon Kwon (Yonsei U.)
Oct. 13-25, AEPSHEP 2016

disclaimers

Q freely taking from other people's lecture materials, w/o properly citing the references

- just a rough list (from which I composed this lecture mostly) ...

Q not paying attention to any mathematical rigor at all
Q It will be impossible to cover "everything" even with the allocated time of 225 minutes...

- so, I end up covering just a little fraction of the story, with a subjective choice of topics

Please stop me any time if you don't follow the story, otherwise it will be merely a pointless series of slides.

Why bother with stat? How come not?

from 1997 TASI lecture by P. Drell

what to make sense of m_{H} plots, statistically

the green \& yellow plots

the p_{0} plots

(Example) T2K result

T2K observed 6 candidate events of $\nu_{\mu} \rightarrow v_{\mathrm{e}}$ while a background of 1.5 ± 03 events is expected.

- How significant is this signal?
- How to include the systematic uncertainty in the analysis?
- What is the relevant 'limit' from this result?

Particle ID and probabilities

Since $B \rightarrow K^{*} \gamma$ has much higher branching fraction than $B \rightarrow \rho \gamma$, the former can be a serious background to the latter. It is crucial to understand the "efficiency" and "fake rate" of K / π identification system of your experiment in this study. The figure below shows the $M_{K \pi}$ invarianbt mass distribution, where one of the pion mass (in $\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay) is replaced by the Kaon mass, for the $B^{0} \rightarrow \rho^{0} \gamma$ signal candidates (Belle, PRL 2008).

Express the following observables in Type-I \& Type-II errors.

- $f_{\pi^{+} \rightarrow K^{+}}=$probability of misidentifying a π^{+}as a K^{+}
- $f_{K^{+} \rightarrow \pi^{+}}=$probability of misidentifying a K^{+}as a π^{+}
- $\epsilon_{K^{+}}=$prob. of identifying a K^{+}correctly as a K^{+}
- $\epsilon_{\pi^{+}}=$prob. of identifying a π^{+}correctly as a π^{+}

References (a very rough list)

- "Statistical Data Analysis" by Glen Cowan http://www.pp.rhul.ac.uk/~cowan/stat_cern.html (lectures at CERN)
- "Statistical Data Analysis for the Physical Sciences" by Adrian Bevan (2013)
- Tom Junk @ TRIUMF, July 2009
- mini-reviews on Probability \& Statistics in RPP (PDG) http://pdg.|bl.gov/2015/reviews/rpp2015-rev-statistics.pdf

The Physics of the B Factories

Received: 29 July 2014 / Accepted: 29 July 2014 / Published online: 19 November 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Eur. Phys. J. C (2014) 74:3026
Page V of $928 \mathbf{3 0 2 6}$
A. J. Bevan*1 B. Golob* ${ }^{* 2,3}$, Th. Mannel*4 ${ }^{* 4}$ S. Prell* ${ }^{* 5}$, B. D. Yabsley*6,
K. Abe ${ }^{87}$, H. Aihara ${ }^{\S 8}$, F. Anulli ${ }^{\S 9,10}$, N. Arnaud ${ }^{\S 11}$, T. Aushev ${ }^{\S 12}$, M. Beneke ${ }^{\S 13,14}$, J. Beringer ${ }^{\S 15}$, F. Bianchi ${ }^{\S 16,17}$, I. I. Bigi ${ }^{\S 18}$, M. Bona ${ }^{\S 16,17}$, N. Brambilla ${ }^{\S 13}$, J. Brodzicka ${ }^{\S 19}$, P. Chang ${ }^{\S 20}$, M. J. Charles ${ }^{\S 21}$, C. H. Cheng ${ }^{\S 22}$, H.-Y. Cheng ${ }^{\S 23}$, R. Chistov ${ }^{\S 12}$, P. Colangelo ${ }^{\S 24}$, J. P. Coleman ${ }^{\S 25}$, A. Drutskoy ${ }^{\S 12,26}$, V. P. Druzhinin ${ }^{\S 27,28}$, S. Eidelman ${ }^{\S 27,28}$, G. Eigen ${ }^{\S 29}$, A. M. Eisner ${ }^{\S 30}$, R. Faccini ${ }^{\S 10,31}$, K. T. Flood ${ }^{\S 22}$, P. Gambino ${ }^{\S 16,17}$, A. Gaz ${ }^{\S 32}$, W. Gradl ${ }^{\S 33}$, H. Hayashii ${ }^{\S 34}$, T. Higuchi ${ }^{\S 35}$, W. D. Hulsbergen ${ }^{\S 36}$, T. Hurth ${ }^{\S 33}$, T. Iijima ${ }^{\S 37,38}$, R. Itoh $^{\S 7}$, P. D. Jackson ${ }^{\S 10,31}$, R. Kass ${ }^{\S 39}$, Yu. G. Kolomensky ${ }^{\S 15}$, E. Kou ${ }^{\S 11}$, P. Križan ${ }^{\S 2,3}$, A. Kronfeld ${ }^{\S 40}$, S. Kumano ${ }^{\S 41,42}$, Y. J. Kwon ${ }^{\S 43}$, T. E. Latham ${ }^{\S 44}$, D. W. G. S. Leith ${ }^{\S 45}$, V. Lüth ${ }^{\S 45}$, F. Martinez-Vid R. Mussa ${ }^{\S 16,17}$, M. Nakao ${ }^{\S 7}$, S. Nishida ${ }^{\S 7}$, J. Ocariz ${ }^{\S 48}$, S. L. Olsen ${ }^{\S 49}$, P. Pakhlov ${ }^{\S}$ A. Palano ${ }^{\S 24,51}$, A. Pich $^{\S 52}$, S. Playfer ${ }^{\S 53}$, A. Poluektov ${ }^{\S 27,28}$, F. C. Porter ${ }^{\S 22}$, S. H. R A. Roodman ${ }^{\S 45}$, Y. Sakai ${ }^{\S 7}$, C. Schwanda ${ }^{\S 56}$, A. J. Schwartz ${ }^{\S 47}$, R. Seidl ${ }^{\S 57}$, S. J. Sel K. Sumisawa ${ }^{\S 7}$, E. S. Swanson ${ }^{\S 60}$, F. Tackmann ${ }^{\S 61}$, K. Trabelsi ${ }^{\S 7}$, S. Uehara ${ }^{\S 7}$, S. Ur G. Vasseur ${ }^{\S 62}$, W. Verkerke ${ }^{\S 63}$, R. Waldi ${ }^{\S 64}$, M. Z. Wang ${ }^{\S 20}$, F. F. Wilson ${ }^{\S 65}$, J. Zupar

* General Editor
§ Section Editor
- Additional Section Writer
\dagger Deceased

Outline

Q Basic elements

- some vocabulary
- Probability axioms
- some probability distributions

Q Two approaches: Frequentist vs. Bayesian
Q. Hypothesis testing
© Parameter estimation
Q Other subjects - "nuisance", "spurious", "look elsewhere"

Basic elements

some vocabulary

statistics, probabilityrandom variables, PDF, CDFexpectation valuesmean, median, modestandard deviation, variance, covariance matrixcorrelation coefficientsweighted average and error
Statistics \& Probability

Statistics is largely the inverse problem of probability.

- Probability:

Know parameters of the theory \Rightarrow predict distributions of possible experimental outcomes

- Statistics:

Know the outcome of an experiment \Rightarrow extract information about the parameters and/or the theory

- Probability is the easier of the two - more straightforward.
- Statistics is what we need as HEP analysts.
- In HEP, the statistics issues often get very complex because we know so much bout our data and need to incorporate all of what we find.

Probability Axioms

Consider a set S with subsets A, B, \ldots

$$
\begin{aligned}
& \text { For all } A \subset S, P(A) \geq 0 \\
& \qquad P(S)=1 \\
& \text { If } A \cap B=\emptyset, P(A \cup B)=P(A)+P(B)
\end{aligned}
$$

Kolmogorov (1933)

Also define conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Note: $P(A \mid B) \neq P(B \mid A)$

Consider an extreme case (with some made-up numbers)

- Ω : all people
- $P($ woman $)=50 \%$
- $P($ pregnant \mid woman $)=3 \%$
- $P($ pregnant $)=1.5 \%$
- $P($ woman \mid pregnant $)=100 \%$
a consequence of $P(A \mid B) \neq P(B \mid A)$

$$
P(\text { data } \mid \text { theory }) \neq P(\text { theory } \mid \text { data })
$$

Random variables and PDFs

- A random variable is a numerical characteristic assigned to an element of the sample space; it can be discrete or continuous.
- Suppose outcome of experiments is continuous:

$$
P(x \in[x, x+d x])=f(x) d x
$$

$\Rightarrow f(x)$ is the probability density function (PDF) with

$$
\int_{-\infty}^{+\infty} f(x) d x=1
$$

- Or, for discrete outcome x_{i} with e.g. $i=1,2, \cdots$

$$
\begin{aligned}
& * P\left(x_{i}\right)=p_{i} \text { "probability mass function" } \\
& * \sum_{i} P\left(x_{i}\right)=1
\end{aligned}
$$

Cumulative distribution function (CDF)

- The probability $F(x)$ to have an outcome less than or equal to x is called the cumulative distribution function (CDF).

$$
\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime} \equiv F(x)
$$

- Alternatively, we have $f(x)=\partial F(x) / \partial x$.

Expectation value

$g(X), h(X)$: functions of random variable X

- for discrete $X \in \Omega$

$$
E(g)=\sum_{\Omega} P(X) g(X)
$$

- for continuous $X \in \Omega$

$$
E(g)=\int_{\Omega} d X f(X) g(X)
$$

- E is a linear operator

$$
E[\alpha g(X)+\beta h(X)]=\alpha E[g(X)]+\beta E[h(X)]
$$

Examples of expectation values

- mean - expectation value for the $\operatorname{PDF}\left(f(X)\right.$ or $\left.P\left(X_{i}\right)\right)$

$$
\mu=\bar{X}=E(X)=\langle X\rangle=\int_{\Omega} d X f(X) X
$$

- variance - it may not always exist!

$$
\begin{aligned}
\sigma^{2}=V(X) & =E\left[(X-\mu)^{2}\right] \\
& =E\left(X^{2}\right)-[E(X)]^{2} \\
& =\int_{\Omega} d X f(X)(X-\mu)^{2}
\end{aligned}
$$

sample mean \& sample variance

- n measurements $\left\{x_{i}\right\}$ where x_{i} follows $N(\mu, \sigma)$
- sample mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

With more measurements, the estimation of the mean will become more accurate.

- sample variance

$$
V(x)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\overline{x^{2}}-\bar{x}^{2}
$$

Sample variance approaches σ^{2} for large n.

Mean and Variance in 2-D

- Expectation value in 2-D: (X, Y) as RV

$$
E[g(X, Y)]=\iint_{\Omega} d X d Y f(X, Y) g(X, Y)
$$

\Rightarrow Extension to higher dimension is straightforward!

- mean of X

$$
\mu_{X}=E[X]=\iint_{\Omega} d X d Y f(X, Y) X
$$

- variance of X

$$
\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]=\iint_{\Omega} d X d Y f(X, Y)\left(X-\mu_{X}\right)^{2}
$$

Covariance matrix

- Given a n-dimensional random variable $\vec{X}=\left(X_{1}, \cdots, X_{n}\right)$, the covariance matrix $C_{i j}$ is defined as:

$$
\begin{aligned}
C_{i j} & =E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right] \\
& =E\left[X_{i} X_{j}\right]-\mu_{i} \mu_{j}
\end{aligned}
$$

- more intuitive is the correlation coefficient, $\rho_{i j}$, given by

$$
\rho_{i j}=\frac{C_{i j}}{\sigma_{i} \sigma_{j}}
$$

properties of covariance matrix

- bounded by one: $-1 \leq \rho_{i j} \leq+1$
- for independent variables $X, Y: \rho(X, Y)=0$

But the reverse is not true! (e.g. $Y=X^{2}$)

- If $f\left(X_{1}, \cdots, X_{n}\right)$ is a multi-dim. Gaussian, then $\operatorname{cov}\left(X_{i}, X_{j}\right)$ gives the tilt of the ellipsoid in (X_{i}, X_{j})

$$
\begin{aligned}
\tan 2 \phi & =\frac{2 \operatorname{cov}\left(\hat{\theta}_{i}, \hat{\theta}_{j}\right)}{\sigma_{j}^{2}-\sigma_{i}^{2}} \\
& =\frac{2 \rho_{i j} \sigma_{i} \sigma_{j}}{\sigma_{j}^{2}-\sigma_{i}^{2}}
\end{aligned}
$$

Correlations - 2D examples

$$
\rho=-0.75
$$

(Quiz time)
 - $\rho=$?
 - Are x and y correlated?

(Quiz time)
 - $\rho=$?
 - Are x and y correlated?

from https://en.wikipedia.org/wiki/Correlation_and_dependence

Error propagation on $f(x, y)$

$$
\sigma_{f}^{2}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)\left(\begin{array}{cc}
V_{x x} & V_{x y} \\
V_{y x} & V_{y y}
\end{array}\right)\binom{\partial f / \partial x}{\partial f / \partial y}
$$

(Q) What if x and y are independent?
(HW) Obtain the error on $f(x, y)=C x / y$

If x and y are uncorrelated (independent),

$$
\begin{gathered}
\Rightarrow \sigma_{f}^{2}=\left(\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{x}^{2} & 0 \\
0 & \sigma_{y}^{2}
\end{array}\right)\binom{f_{x}}{f_{y}} \\
f_{x} \equiv \partial f / \partial x, \text { etc. }=\sigma_{x}^{2}\left(\frac{\partial f}{\partial x}\right)^{2}+\sigma_{y}^{2}\left(\frac{\partial f}{\partial y}\right)^{2} \\
f(x, y)=C x / y \rightarrow \delta f / f=\sqrt{(\delta x / x)^{2}+(\delta y / y)^{2}}
\end{gathered}
$$

If \boldsymbol{x} and \boldsymbol{y} are $100 \%(+)$ correlated, egg. $y=\alpha x$

$$
\begin{aligned}
\sigma_{f}^{2} & =\left(\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right)\binom{\sigma_{x}^{2} \alpha \sigma_{x}^{2}}{\alpha \sigma_{x}^{2} \sigma_{y}^{2}\left(=\alpha^{2} \sigma_{x}^{2}\right)}\binom{f_{x}}{f_{y}}
\end{aligned} \quad \begin{aligned}
& \delta y=\alpha \delta x \cdot(\alpha>0) \\
& \rho_{i j}=V_{i j} / \sigma_{i} \sigma_{j} \\
&
\end{aligned}=\sigma_{x}^{2}\left(\frac{f}{x}-\frac{f}{y} \alpha\right)^{2}=0 \quad 1 \quad+1=\frac{V_{i j}}{\sigma_{x} \sigma_{y}}, \sigma_{y}=\alpha \sigma_{x} .
$$

Weighted average and error

Q. How to combine uncorrelated measurements (x_{j}, σ_{j}) with different amount of errors?

$$
\bar{x} \pm \sigma_{x}=\frac{\sum_{i} x_{i} / \sigma_{i}^{2}}{\sum_{i} 1 / \sigma_{i}^{2}} \pm\left(\sum_{i=1}^{n} 1 / \sigma_{i}^{2}\right)^{-1 / 2}
$$

Q What will happen if the measurements are correlated?

$$
\bar{x}=\left[\sum_{j=1}^{M} V_{j}^{-1}\right]^{-1} \cdot\left[\sum_{j=1}^{M} V_{j}^{-1} x_{j}\right] \quad V=\left[\sum_{j=1}^{M} V_{j}^{-1}\right]^{-1}
$$

(Ex) to measure S and C from $B^{0} \rightarrow \rho^{+} \rho^{-}$

(Ex) to measure S and C from $B^{0} \rightarrow \rho^{+} \rho^{-}$

Exp	S	C	$V_{i j}$
BaBar	-0.17 ± 0.21	-0.01 ± 0.16	-0.0012
Belle	-0.13 ± 0.16	0.00 ± 0.12	0.00033

Let $j=1$ for BaBar, $=2$ for Belle

- Obtain $\vec{X}^{(j)}$ where $X_{1}=S, X_{2}=C$
- Obtain $V=\left[V_{1}^{-1}+V_{1}^{-1}\right]^{-1}$
- Calculate the weighted average of S and C, and their errors

some useful distributions

	Probability density function $f($ variable; parameters $)$	Characteristic function $\phi(u)$	Mean	Variance σ^{2}
Uniform	$f(x ; a, b)=\left\{\begin{array}{cc}1 /(b-a) & a \leq x \leq b \\ 0 & \text { otherwise }\end{array}\right.$	$\frac{e^{i b u}-e^{i a u}}{(b-a) i u}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
Binomial	$f(r ; N, p)=\frac{N!}{r!(N-r)!} p^{r} q^{N-r}$	$\left(q+p e^{i u}\right)^{N}$	$N p$	$N p q$
	$r=0,1,2, \ldots, N ; \quad 0 \leq p \leq 1 ; \quad q=1-p$			

Poisson $\quad f(n ; \nu)=\frac{\nu^{n} e^{-\nu}}{n!} ; n=0,1,2, \ldots ; \quad \nu>0 \quad \exp \left[\nu\left(e^{i u}-1\right)\right] \quad \nu \quad \nu$

Normal
(Gaussian)

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right) \quad \exp \left(i \mu u-\frac{1}{2} \sigma^{2} u^{2}\right) \quad \mu
$$

$$
-\infty<x<\infty ; \quad-\infty<\mu<\infty ; \quad \sigma>0
$$

Multivariate
Gaussian

$$
\exp \left[i \boldsymbol{\mu} \cdot \boldsymbol{u}-\frac{1}{2} \boldsymbol{u}^{T} V \boldsymbol{u}\right] \quad \boldsymbol{\mu} \quad V_{j k}
$$

$$
\begin{gathered}
\times \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} V^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right] \\
-\infty<x_{j}<\infty ; \quad-\infty<\mu_{j}<\infty ; \quad|V|>0
\end{gathered}
$$

$$
\chi^{2} \quad f(z ; n)=\frac{z^{n / 2-1} e^{-z / 2}}{2^{n / 2} \Gamma(n / 2)} ; \quad z \geq 0 \quad(1-2 i u)^{-n / 2} \quad n \quad 2 n
$$

Binomial distribution

Q Given a repeated set of N trials, each of which has probability p of "success" (hence $1-p$ of "failure"), what is the distribution of the number of successes if the N trials are repeated over and over?

$$
\operatorname{Binom}(k \mid N, p)=\left(\frac{N}{k}\right) p^{k}(1-p)^{N-k}, \quad \sigma(k)=\sqrt{\operatorname{Var}(k)}=\sqrt{N p(1-p)}
$$

where k is the number of success trials

- (Ex) events passing a selection cut, with a fixed total N

$$
\begin{aligned}
\epsilon & =\frac{N_{\mathrm{pass}}}{N} \\
\sigma_{\epsilon} & =\sigma_{N_{\mathrm{pass}}} / N=\sqrt{N p(1-p)} / N=\sqrt{p(1-p) / N}
\end{aligned}
$$

Binomial error: an example

What is the uncertainty σ_{A} on an asymmetry given by $A=\left(N_{1}-N_{2}\right) /\left(N_{1}+N_{2}\right)$, where $N_{1}+N_{2}=N$ is the (fixed) total \# of events obtained in the counting experiment? Take, e.g., $N_{1}=80$ and $N_{2}=20$.

Poisson distribution

- Limit of Binomial when $N \rightarrow \infty$ and $p \rightarrow 0$ with $N p=\mu$ being finite and fixed \Rightarrow Poisson distribution

$$
f_{P}(k \mid \mu)=\frac{e^{-\mu} \mu^{k}}{k!}, \sigma(k)=\sqrt{\mu}
$$

Normalized in two different ways:

$$
\begin{aligned}
& \sum_{k=0}^{\infty} f_{P}(k \mid \mu)=1, \forall \mu \\
& \int_{0}^{\infty} f_{P}(k \mid \mu) d \mu=1, \forall k
\end{aligned}
$$

All counting results in HEP are assumed to be Poisson-distributed

Poisson distribution

Gaussian (Normal) distribution

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-(x-\mu)^{2} / 2 \sigma^{2}\right)
$$

$$
\int_{-\infty}^{x} f(x) d x=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sqrt{2 \sigma^{2}}}\right)\right]
$$

Gaussian (Normal) distribution

TMath: : Prob $\left(\delta^{2}, 1\right)$

α	δ
0.3173	1σ
4.55×10^{-2}	2σ
2.7×10^{-3}	3σ
6.3×10^{-5}	4σ
5.7×10^{-7}	5σ
2.0×10^{-9}	6σ

α	δ
0.2	1.28σ
0.1	1.64σ
0.05	1.96σ
0.01	2.58σ
0.001	3.29σ
10^{-4}	3.89σ

Table 36.1: Area of the tails α outside $\pm \delta$ from the mean of a Gaussian distribution.

Poisson for large μ is approximately Gaussian of width $\sigma=\sqrt{\mu}$

If in a counting experiment all we have is a measurement n, we often use this to estimate μ.

We then draw \sqrt{n} error bars on the data.
This is just a convention, and can be misleading.
(It is still recommended you do it, however.)

Not all distributions are Gaussian

(Ex) track impact parameter distributions

\exists multiple scattering

- dominant Gaussian core
- rare large scatters, including heavyquark decays, nuclear interactions, etc.

"All models are wrong, but some are useful." from Box \& Draper (1987)

Chi-square $\left(\chi^{2}\right)$ distribution

The $\chi^{2} \operatorname{pdf} f(z ; n)$ for continuous random variable $z(\geq 0)$ with n deg. of freedom:

$$
\begin{aligned}
& f(z ; n)=\frac{z^{n / 2-1} e^{-z / 2}}{2^{n / 2} \Gamma(n / 2)} \\
& n=1,2, \cdots=\# \text { (d.o.f.) } \\
& E[z]=n, \quad V[z]=2 n
\end{aligned}
$$

- For independent Gaussian r.v. $x_{i}(i=1, \cdots, n)$ each with mean μ_{i} and variance $\sigma_{i}^{2}, z=\sum_{i=1}^{n}\left(x_{i}-\mu_{i}\right)^{2} / \sigma_{i}^{2}$ follows χ^{2} pdf with n dof.
- Useful for goodness-of-fit test with method of least squares.

Cauchy (Breit-Wigner) distribution

$$
f_{\mathrm{BW}}\left(x ; \Gamma, x_{0}\right)=\frac{1}{\pi} \frac{\Gamma / 2}{\left(x-x_{0}\right)^{2}+(\Gamma / 2)^{2}}
$$

$E(x), V(x)$: not well-defined
$x_{0}=$ mode, median
$\Gamma=$ full width at half-maximum

- (Ex) invariant mass distribution of strongly-decaying hadrons, e.g. ρ, K^{*}, ϕ, with $\Gamma(=1 / \tau)$ being the decay rate

Why not make your own random variables?

a free \& powerful utility: ROOT http://root.cern.ch/Q some frequently used random variables by ROOT

- flat on $[0,1]$
- Gaussian
- Exponential

$$
\begin{aligned}
& \text { xl }=\text { rl.Rndm(); } \\
& \text { x2 }=\text { r2.Gaus(0.0,1.0); } \\
& \text { x3 }=\text { r3.Exp(1.0); } \\
& \text { x4 }=\text { r4.Poisson(3.0); }
\end{aligned}
$$

- Poisson
and so on...

Random Poisson

some theorems, laws...

the Law of Large Numbers

- Suppose you have a sequence of indep't random variables x_{i}
- with the same mean μ
- and variances σ_{i}^{2}
- but otherwise distributed "however"
- the variances are not too large

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(1 / N^{2}\right) \sum_{i=1}^{N} \sigma_{i}^{2}=0 \tag{1}
\end{equation*}
$$

Then the average $\bar{x}_{N}=(1 / N) \sum_{i} x_{i}$ converges to the true mean μ

- (Note) What if the condition (1) is finite but non-zero?
\Rightarrow the convergence is "almost certain" (i.e. the failures have measure zero)
In short, if you try many times, eventually you get the true mean!

the Central Limit Theorem

- Suppose you have a sequence of indep't random variables x_{i}
- with means μ_{i} and variances σ_{i}^{2}
- but otherwise distributed "however"
- and under certain conditions on the variances

The sum $S=\sum_{i} x_{i}$ converges to a Gaussian

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{S-\sum \mu_{i}}{\sqrt{\sum \sigma_{i}^{2}}} \rightarrow \mathcal{N}(0,1) \tag{2}
\end{equation*}
$$

- (Note) important not to confuse LLN with CLT
- LLN: with enough samples, the average \rightarrow the true mean
- CLT: if you put enough random numbers into your processor, the distribution of their average $\rightarrow \mathcal{N}(0,1)$

more examples of CLT at work

more examples of CLT at work

the Neyman-Pearson Lemma

For a test of size α of the simple hypothesis H_{0}, to obtain the highest power w.r.t. the simple alternative H_{1}, choose the critical region w such that the likelihoot ratio satisfies

$$
\frac{P\left(\vec{x} \mid H_{1}\right)}{P\left(\vec{x} \mid H_{0}\right)} \geq k
$$

everywhere in w and is $<k$ elsewhere, where k is a constant chosen for each pre-determined size α.

the Neyman-Pearson Lemma

Q Application in Belle particle ID

the Neyman-Pearson Lemma

Q. Application in Belle particle ID

$$
P_{i} \equiv P_{i}^{d E / d x} \times P_{i}^{\mathrm{TOF}} \times P_{i}^{\mathrm{Ch}} \quad \text { e.g. }(i=\pi \text { or } K)
$$

For optimal statistic, construct the likelihood ratio $R_{K / \pi}=P_{K} / P_{\pi}$ (or any ftn. that is monotonic to it)

the Wilk's theorem

 We will encounter it later when we discuss the "likelihood ratio" ... THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIOFOR TESTING COMPOSITE HYPOTHESES ${ }^{1}$ (FOR TESTING COMPOSITE HYPOTHESES ${ }^{1}$
 By S. S. Wilks
 By applying the principle of maximum likelihood, J. Neyman and E. S. Pearson ${ }^{2}$ have suggested a method for obtaining functions of observations for testing what are called composite statistical hypotheses, or simply composite
}
${ }^{1}$ Presented to the American Mathmatical Society, March 26, 1937.

We can summarize in the
Theorem: If a population with a variate x is distributed according to the probability function $f\left(x, \theta_{1}, \theta_{2} \cdots \theta_{h}\right)$, such that optimum estimates $\bar{\theta}_{i}$ of the θ_{i} exist which are distributed in large samples according to (3), then when the hypothesis H is true that $\theta_{i}=\theta_{0 i}, i=m+1, m+2, \cdots h$, the distribution of $-2 \log \lambda$, where λ is given by (2) is, except for terms of order $1 / \sqrt{n}$, distributed like χ^{2} with $h-m$ degrees of freedom.

the Wilk's theorem

Suppose we model the data \vec{X} with a likelihood $L(\vec{\mu})$ that depends on a set of N parameters $\vec{\mu}=\left(\mu_{1}, \cdots, \mu_{N}\right)$. (For simplicity, let's just consider a single parameter μ.)

- Define the statistic $t_{\mu}=-2 \ln [L(\mu) / L(\hat{\mu})]$, where $\hat{\mu}$ is the ML estimator.
- The value of t_{μ} is a measure of how well the hypothesized parameter μ stand in agreement with the observed data.
- Larger values of t_{μ} indicate increasing incompatibility between the data and the hypothesized μ.
- According to Wilk's theorem, if the parameter value μ is true, then in the asymptotic limit of a large data sample, the PDF of t_{μ} is a χ^{2} distribution for N d.o.f.

$$
f\left(t_{\mu} \mid \mu\right) \sim \chi_{N}^{2}
$$

A tale of two statistics ...
 Frequentist vs. Bayesian

"Bayes and Frequentism: a particle physicist's perspective" by Louis Lyons, arXiv:1301.1273

Two approaches

Relative frequencyA, B, \ldots are outcomes of a repeatable experiment Frequentist

$$
P(A)=\lim _{n \rightarrow \infty} \frac{\text { times outcome is } A}{n}
$$

Q Subjective probability
A, B, \ldots are hypotheses (statements that are true or false) Bayesian
$P(A)=$ degree of belief that A is true
Frequentist approach is, in general, easy to understand, but some HEP phenomena are best expressed by subjective prob., e.g. systematic uncertainties, prob(Higgs boson exists), ...

Bayes' theorem

From the definition of conditional prob., we have

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { and } P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

- but $P(A \cap B)=P(B \cap A)$
- therefore,

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- First published (posthumous) by Rev. Thomas Bayes (1702-1761)

An essay towards solving a problem in the doctrine of chances, Phil. Trans. R. Soc. 53 (1763) 370.

P, Conditional P, and Derivation of Bayes' Theorem

 in Pictures

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A})=\frac{0}{\square} \quad \mathbf{P}(\mathbf{B})=\frac{\square}{\square} \\
& \mathbf{P}(\mathbf{A I B})=\frac{0}{\square} \\
& \mathbf{P}(\mathbf{B I A})=\frac{0}{0} \\
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=\frac{0}{\square}
\end{aligned}
$$

$$
\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B} \mid \mathbf{A})=\frac{0}{\square} \times \frac{0}{\bigcirc}=\frac{0}{\square}=\mathbf{P}(\mathbf{A} \cap \mathbf{B})
$$

$$
\mathbf{P}(\mathbf{B}) \times \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\square}{\square} \times \frac{0}{\square}=\frac{0}{\square}=\mathbf{P}(\mathbf{A} \cap B)
$$

$$
\Rightarrow P(B \mid A)=P(A \mid B) \times P(B) / P(A)
$$

Frequentist statistics - general philosophy

- In frequentist statistics, probabilities such as
P (SUSY does exist)
$P\left(0.117<\alpha_{s}<0.121\right)$
are either 0 or 1 , but we don't have the answer

Bayesian statistics - general philosophy

- In Bayesian statistics, interpretation of probability is extended to the degree of belief (i.e. subjective).
- suitable for hypothesis testing (but no golden rule for priors)
probability of the data assuming hypothesis H (the likelihood)

$$
P(H \mid \vec{x})=\frac{P(\vec{x} \mid H) \pi(H)}{\int P(\vec{x} \mid H) \pi(H) d H}
$$

posterior probability, i.e., after seeing the data
prior probability, i.e., before seeing the data
normalization involves sum over all possible hypotheses

- can also provide more natural handling of non-repeatable things: e.g. systematic uncertainties, P (Higgs boson exists)

(Ex) Bayesian answer for coin toss

Suppose I stand to win or lose money in a single coin-toss. My companion gives me a coin to use for the game.

- Do I trust the coin? What is P (faircoin)?
- Frequentist answer:
- toss the coin n times
- $P($ heads $)=\lim _{n \rightarrow \infty}\left(n_{\mathrm{H}} / n\right)$
- make a complicated statement about the results, which is only indirectly about whether the coin is fair ...
- But I can only test the coin with five throws:
- What if I get 4H, 1T?
- Do I trust the coin, or claim that the game is unfair?
- What about Bayesian answer?

(Ex) Bayesian answer for coin toss

Priors: a 'bad' coin has a 75% probability to show 'head' for a 'fair' coin, it's 50\%

$$
\begin{aligned}
& P(\text { fair } \mid \mathrm{BG})=0.50 \\
& P(\text { bad } \mid \mathrm{BG})=0.50
\end{aligned}
$$

Likelihoods: $\quad P(4 \mathrm{H}, 1 \mathrm{~T} \mid$ fair $)=0.1563$
$P(4 \mathrm{H}, 1 \mathrm{~T} \mid \mathrm{bad})=0.3955$
Posterior:

$$
\begin{aligned}
P(\text { fair } \mid 4 \mathrm{H}, 1 \mathrm{~T}, \mathrm{BG}) & =\frac{P(4 \mathrm{H}, 1 \mathrm{~T} \mid \text { fair }) \cdot P(\text { fair } \mid \mathrm{BG})}{\sum_{i} P(4 \mathrm{H}, 1 \mathrm{~T} \mid i) \cdot P(i \mid \mathrm{BG})} \\
& =\frac{0.1563 \cdot 0.50}{0.1563 \cdot 0.50+0.3955 \cdot 0.50}=0.283
\end{aligned}
$$

(Ex) Bayesian answer for coin toss

Priors: a 'bad' coin has a 75% probability to show 'head' for a 'fair' coin, it's 50\%

$$
\begin{aligned}
& P(\text { fair } \mid G G)=0.95 \\
& P(\text { bad } \mid G G)=0.05
\end{aligned}
$$

Likelihoods: $\quad P(4 \mathrm{H}, 1 \mathrm{~T} \mid$ fair $)=0.1563$
$P(4 \mathrm{H}, 1 \mathrm{~T} \mid \mathrm{bad})=0.3955$
Posterior:

$$
\begin{aligned}
P(\text { fair } \mid 4 \mathrm{H}, 1 \mathrm{~T}, \mathrm{GG}) & =\frac{P(4 \mathrm{H}, 1 \mathrm{~T} \mid \text { fair }) \cdot P(\text { fair } \mid \mathrm{GG})}{\sum_{i} P(4 \mathrm{H}, 1 \mathrm{~T} \mid i) \cdot P(i \mid \mathrm{GG})} \\
& =0.88
\end{aligned}
$$

Frequentist or Bayesian?

- While the classic or frequentist approach can lead to a well-defined probability for a given situation, it is not always usable.
\rightarrow In such circumstances one is left with only one option: Bayesian.
- When data are scarce \rightarrow these two approaches can give somewhat different predictions,
but given sufficiently large data sample, they give pretty much the same conclusion. In that case the choice between the two may be regarded arbitrary.
- Perhaps, we may choose one for the main result, and try the other for a cross-check.

