AEPSHEP2016 Lecture Field theory and the Electroweak Standard Model

Ryuichiro Kitano (KEK)

Lecture@AEPSHEP2016, Oct.13-15, 2016, Beijing

Plan:
Lecture 1: Fields and Particles
Lecture 2: Symmetry Breaking and the Higgs mechanism
Lecture 3: Electroweak Standard Model

Lecture 1

Fields and Particles

Let's try to understand why these peaks are called "particles."

Fields (classical)

Fields are functions of space-time

$$
\phi(t, \mathbf{x})
$$

scalar field: $\quad \phi(t, \mathbf{x})$
spinor field: $\quad \psi_{\alpha}(t, \mathbf{x})$
vector field: $A_{\mu}(t, \mathbf{x})$

They can be classified by how they transform under the Lorentz transformation.

Quantum Field Theory

quantum mechanics:

$$
\begin{aligned}
q(t) & \rightarrow \hat{q}(t) \\
\text { coordinate } & \longrightarrow \text { operator }
\end{aligned}
$$

quantum field theory:

$$
\phi(t, \mathbf{x}) \rightarrow \hat{\phi}(t, \mathbf{x})
$$

note here that the coordinate x is a label. Not an operator! It's just a collection of Q.M.

$$
\phi\left(t, \mathbf{x}_{\mathbf{1}}\right) \quad \phi\left(t, \mathbf{x}_{\mathbf{2}}\right) \quad \cdots \cdots
$$

Particles

$|\mathbf{P}\rangle$
one-particle state with three-momentum $\mathbf{P}=\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{z}\right)$

$$
\begin{array}{rc}
\text { special relativity says } \underset{\uparrow}{E}=\sqrt{|\mathbf{P}|^{2}+m^{2}} \\
\text { energy } & \text { mass }
\end{array}
$$

In QFT, there are also states that describes many particles:

$$
\left|\mathbf{P}_{1}, \mathbf{P}_{2}, \cdots\right\rangle
$$

(Note: $\hbar=c=1$)

Wave functions

The relation between the wave functions in the QM and the state in QFT is

vacuum (the lowest energy state)
The functional form can be fixed by the Lorentz covariance.

$$
\begin{array}{rlr}
\varphi(x) & =\sqrt{Z} e^{-i p \cdot x} & \\
\langle 0| \hat{\psi}_{\alpha}(x)|\mathbf{P}, \sigma\rangle & =\sqrt{Z} u(\mathbf{P}, \sigma) e^{-i p \cdot x} \quad \begin{array}{cc}
\text { these are solutions } \\
\text { of wave equations. }
\end{array} \\
\langle 0| \hat{A}_{\mu}(x)|\mathbf{P}, \sigma\rangle & =\sqrt{Z} \epsilon_{\mu}(\mathbf{P}, \sigma) e^{-i p \cdot x} & \text { (e.g. Klein-Gordon, Dirac, } \\
\text { Maxwell eq.) }
\end{array}
$$

Scattering amplitudes

$$
\mathcal{M}={ }_{\operatorname{out} t}\left\langle\mathbf{P}_{3}, \mathbf{P}_{4} \mid \mathbf{P}_{1}, \mathbf{P}_{2}\right\rangle_{\text {in }}
$$

normalization

$$
\begin{aligned}
& \left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle=(2 \pi)^{3} 2 E \delta^{3}\left(\mathbf{P}-\mathbf{P}^{\prime}\right) \\
& \int \frac{d^{3} \mathbf{P}}{(2 \pi)^{3} 2 E}|\mathbf{P}\rangle\langle\mathbf{P}|=1
\end{aligned}
$$

scattering cross section

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2}} \frac{1}{s}|\mathcal{M}|^{2} \\
& \quad s=\left(p_{1}+p_{2}\right)^{2}
\end{aligned}
$$

Correlation functions

two-point function:

$$
\begin{aligned}
\langle 0| \mathbf{T} \hat{\phi}(x) \hat{\phi}(y)|0\rangle= & \langle 0| \hat{\phi}(x) \hat{\phi}(y)|0\rangle \theta\left(x^{0}-y^{0}\right) \\
& +\langle 0| \hat{\phi}(y) \hat{\phi}(x)|0\rangle \theta\left(y^{0}-x^{0}\right)
\end{aligned}
$$

Time ordered product
three-point function:

$$
\begin{array}{r}
\langle 0| \mathbf{T} \hat{\phi}(x) \hat{\phi}(y) \hat{\phi}(z)|0\rangle=\langle 0| \hat{\phi}(x) \hat{\phi}(y) \hat{\phi}(z)|0\rangle \\
\times \theta\left(x^{0}-y^{0}\right) \theta\left(y^{0}-z^{0}\right) \\
+\cdots
\end{array}
$$

Particles and Poles

$$
\begin{aligned}
& \int d^{4} x\langle 0| \mathbf{T} \hat{\phi}(x) \hat{\phi}(y) \cdots|0\rangle e^{i p \cdot x} \\
& \quad=\frac{i \sqrt{Z}}{p^{2}-m^{2}+i \epsilon}\langle\mathbf{P}| \mathbf{T} \hat{\phi}(y) \cdots|0\rangle+\text { non pole terms. }
\end{aligned}
$$

(derive this on the board.)

Contribution from oneparticle states
$=$ poles :
to correlation functions
location of the pole $=$ mass 2 of the particle

Repeating this procedure

$$
{ }_{\mathrm{out}}\left\langle\mathbf{P}_{3}, \mathbf{P}_{4} \mid \mathbf{P}_{1}, \mathbf{P}_{2}\right\rangle_{\text {in }}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
$$

$=\left(\frac{i \sqrt{Z}}{p_{1}^{2}-m^{2}+i \epsilon}\right)^{-1}\left(\frac{i \sqrt{Z}}{p_{2}^{2}-m^{2}+i \epsilon}\right)^{-1}\left(\frac{i \sqrt{Z}}{p_{3}^{2}-m^{2}+i \epsilon}\right)^{-1}\left(\frac{i \sqrt{Z}}{p_{4}^{2}-m^{2}+i \epsilon}\right)^{-1}$

$$
\times\left.\langle 0| \mathbf{T} \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \hat{\phi}\left(x_{3}\right) \hat{\phi}\left(x_{4}\right)|0\rangle\right|_{\text {fourier transform. }}
$$

scattering amplitude
removing poles for initial and final state particles

Now,

If there are contributions from "intermediate"
one-particle state, the scattering amplitude has a pole

$$
\begin{aligned}
& \text { at } \mathrm{p}^{2}=\mathrm{m}^{2} . \\
& \langle 0| \mathbf{T} \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right)|\mathbf{P}\rangle\langle\mathbf{P}| \mathbf{T} \hat{\phi}\left(x_{3}\right) \hat{\phi}\left(x_{4}\right)|0\rangle \neq 0
\end{aligned}
$$

peak = particle!

remember, that

We haven't specified the theory. It is general (and actually that's the definition) that

particles

$$
=\quad \text { poles }!
$$

location of the pole
mass 2

$$
=\quad \frac{1}{p^{2}-m^{2}+i \epsilon}
$$

How to compute the correlation functions

$\langle 0| \mathbf{T} \hat{\phi}\left(x_{1}\right) \cdots \hat{\phi}\left(x_{n}\right)|0\rangle$

$$
Z=\int[d \phi] e^{i S[\phi]}
$$

$$
=\frac{1}{Z} \int[d \phi] \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{i S[\phi]}
$$

path integral action
$\phi(t=-\infty+i \epsilon, \mathbf{x}) \quad$ middle

$$
\phi(t=\infty-i \epsilon, \mathbf{x})
$$

future
path integral = integrate over all the possible functions

action sets the theory

functional of fields Lagrangian density

(Lorentz invariant real function of fields)

For example,

> we'll see that this term represents the mass of a particle. (mass term)

$$
\mathcal{L}(\phi)=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4!} \lambda \phi^{4}+\cdots
$$

This factor can be chosen to be $1 / 2$
interaction term by field rescaling. (kinetic term)

$$
\begin{gathered}
\text { Free theory } \\
\mathcal{L}(\phi)=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} \\
\int d^{4} x\langle 0| \mathbf{T} \hat{\phi}(x) \hat{\phi}(0)|0\rangle e^{i p \cdot x}=\frac{i}{p^{2}-m^{2}+i \epsilon} \\
\text { (derive this on the board.) }
\end{gathered}
$$

1. we see a pole at $\mathrm{m}^{2} . \longrightarrow$ particle with mass m !
2. the numerator is " i ". $\longrightarrow \quad \mathrm{Z}$ factor is unity. this is why we choose this normalization.
3. fields = particles in free theories.

Feynman diagrams

For example, (still free theory)

$$
\begin{aligned}
& \langle 0| \mathbf{T} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)^{2}|0\rangle \\
& =\left.\frac{1}{Z[0]} \frac{\delta}{\delta i J\left(x_{1}\right)} \frac{\delta}{\delta i J\left(x_{2}\right)} \frac{\delta}{\delta i J\left(x_{3}\right)} \frac{\delta}{\delta i J\left(x_{3}\right)} Z[J]\right|_{J=0} \\
& = \\
& =\left.\frac{\delta}{\delta i J\left(x_{1}\right)} \frac{\delta}{\delta i J\left(x_{2}\right)} \frac{\delta}{\delta i J\left(x_{3}\right)} \frac{\delta}{\delta i J\left(x_{3}\right)} e^{-(i / 2) J \cdot D^{-1} J}\right|_{J=0} \\
& \\
& \left.\mathrm{x}_{1}\right)_{x_{x_{1} x_{2}} i\left(D^{-1}\right)_{x_{3} x_{3}}+i\left(D^{-1}\right)_{x_{1} x_{3}} i\left(D^{-1}\right)_{x_{3} x_{2}}} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{2}
\end{aligned}
$$

Perturbation theory

Let's consider

$$
\mathcal{L}(\phi)=c^{\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-} \begin{gathered}
\frac{1}{4!} \lambda \phi^{4} \\
\text { free } \\
\text { interaction }
\end{gathered}
$$

One can calculate the correlation functions as a series expansion of λ.

$$
\begin{aligned}
Z[J] & =\int[d \phi] e^{i S[\phi]+i \int d^{4} x J(x) \phi(x)} \\
& =\int[d \phi]\left(1-i \int d^{4} x \frac{\lambda}{4!} \phi^{4}+\cdots\right) e^{i S_{\text {free }}[\phi]+i \int d^{4} x J(x) \phi(x)}
\end{aligned}
$$

Each terms can be evaluated in the free theory.

For example,

$\langle 0| \mathbf{T} \phi\left(x_{1}\right) \phi\left(x_{2}\right)|0\rangle$
$=\frac{1}{Z[0]} \int[d \phi] \phi\left(x_{1}\right) \phi\left(x_{2}\right) e^{i S_{\text {free }}+i \int d^{4} x\left(-\frac{\lambda}{4!} \phi(x)^{4}\right)}$
$=\frac{1}{Z_{\text {free }}[0]} \int[d \phi] \phi\left(x_{1}\right) \phi\left(x_{2}\right) e^{i S_{\text {free }}}$
$+\frac{1}{Z_{\text {free }}[0]} \int[d \phi] \phi\left(x_{1}\right) \phi\left(x_{2}\right)\left(i \int d^{4} x \frac{-\lambda}{4!} \phi^{4}\right) e^{i S_{\text {free }}}$
$-\frac{1}{Z_{\text {free }}[0]} \int[d \phi] \phi\left(x_{1}\right) \phi\left(x_{2}\right) e^{i S_{\text {free }}} \frac{1}{Z_{\text {free }}[0]} \int[d \phi]\left(i \int d^{4} x \frac{-\lambda}{4!} \phi^{4}\right) e^{i S_{\text {free }}}$
$+O\left(\lambda^{2}\right)$
$x_{1} \underbrace{}_{\text {free }} x_{2}+x_{1} \overbrace{x} x_{2}+x_{1}$
free

corrections to mass and Z

In the real world,

We will learn this soon.

Lecture 2

gauge theory

theory to describe "massless" spin-1 particles
(e.g. photon)
photon states

$$
|\mathbf{P}, \pm\rangle
$$

vector field

$$
A_{\mu}(x) \rightarrow \hat{A}_{\mu}(x)
$$

wave function

$$
\langle 0| \hat{A}_{\mu}(x)|\mathbf{P}, \pm\rangle=\sqrt{Z} \epsilon_{\mu}^{ \pm}(\mathbf{P}) e^{-i p \cdot x}
$$

polarization vector
A_{μ} is a combination of four independent functions. but, there are only two degrees of freedom.

Lagrangian for $\mathrm{A} \mu$

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

field strength
(electric and magnetic fields)
gauge invariance

$$
\begin{aligned}
& A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \theta(x) \\
& F_{\mu \nu}(x) \rightarrow F_{\mu \nu}(x)
\end{aligned}
$$

Action is invariant under this transformation.
\longrightarrow The same physics is described by

$$
A_{\mu} \text { and } A_{\mu}+\partial_{\mu} \theta
$$

physical degrees of freedom

Let A_{μ} be a field configuration and $\partial^{\mu} A_{\mu}(x)=c(x)$.
The same physical system can be described by

$$
\begin{gathered}
A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \theta \quad \text { for an arbitrary scalar } \\
\quad \text { function } \theta(x) \\
\longrightarrow \partial^{\mu} A_{\mu}^{\prime}=c(x)+\square \theta(x)=0
\end{gathered}
$$

by choosing $\theta(x)$ such that $\square \theta(x)=-c(x)$.

One can restrict ourselves that

$$
\partial^{\mu} A_{\mu}=0 \quad \text { (Lorentz condition) }
$$

One can still describe all the physical system.

Now we consider the wave function:

$$
\begin{array}{cc}
\langle 0| \hat{A}_{\mu}(x)|\mathbf{P}\rangle=\epsilon_{\mu} e^{-i p \cdot x} & p^{2}=0 \\
\text { (massless) }
\end{array}
$$

Lorentz condition $\quad p^{\mu} \epsilon_{\mu}=0$
Yet unfixed gauge $\quad \hat{A}_{\mu} \rightarrow \hat{A}_{\mu}+\partial_{\mu} \hat{\theta}$

$$
\epsilon^{\mu} \rightarrow \epsilon^{\mu}-i C p^{\mu}
$$

for arbitrary C , the new ϵ^{μ} satisfies the Lorentz condition.
$\longrightarrow \epsilon_{\mu} \propto p_{\mu}$ part can be zero.
(ϵ_{μ} shifted by pu describes the same physics)

Therefore,

$$
p^{\mu}=\left(\begin{array}{c}
p \\
0 \\
0 \\
p
\end{array}\right)
$$

$$
\epsilon^{\mu}=c_{L}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
\epsilon_{\mu} \propto p_{\mu}
$$

one can set this zero (unphysical)

$$
\epsilon^{\mu} p_{\mu} \neq 0
$$

zero by Lorentz condition (unphysical)

two physical polarizations

massive spin-1 particle (e.g. W-boson, Z-boson)
 $$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad+\frac{m^{2}}{2} A_{\mu} A^{\mu}
$$
 mass term

not gauge invariant anymore.
eq. of motion

$$
\begin{aligned}
& \partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)+m^{2} A^{\nu}=0 \\
& \partial_{\nu}\left(\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)+m^{2} A^{\nu}\right)=0 \\
& \text { identically zero }
\end{aligned}
$$

$$
\longrightarrow \partial^{\mu} A_{\mu}=0 \quad \text { (Lorentz condition) }
$$

massive case

We will learn soon that

Higgs mechanism:
massless spin-1: 2 d.o.f.
feeding 1 d.o.f. by Higgs fields
massive spin-1: 3 d.o.f.

\title{

Symmetry and symmetry

breaking

}

breaking

}

Let's consider a model:

$$
\begin{aligned}
& \mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-V(\phi) \\
& V(\phi)=m^{2}|\phi|^{2}+\frac{\lambda}{4}|\phi|^{4}
\end{aligned}
$$

$\mathrm{U}(1)$ global symmetry

$$
\phi \rightarrow e^{i \theta} \phi \quad(\mathrm{U}(1) \text { transformation })
$$

Here, θ is an arbitrary real number (not a function!)

$$
\mathcal{L} \rightarrow \mathcal{L}
$$

Lagrangian is invariant under the $\mathrm{U}(1)$ transformation.

$$
\begin{aligned}
\mathcal{L} & =\partial_{\mu} \phi^{*} \partial^{\mu} \phi-V(\phi) \quad \phi=- \\
= & \frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1}+\frac{1}{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2} \\
& \quad-\frac{m^{2}}{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)-\frac{\lambda}{16}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}
\end{aligned}
$$

$\longrightarrow \quad$ spectrum of the theory is
2 massive spin-0 d.o.f. with the same mass "m" (real part and the imaginary part.)
Also, there is a conserved charge " ϕ " number.
Symmetry in the Lagrangian
\longrightarrow Symmetry in the spectrum?
... actually, not necessarily the case.

Spontaneous symmetry breaking

Consider the case with

$$
V(\phi)=-m^{2}|\phi|^{2}+\frac{\lambda}{4}|\phi|^{4}
$$

Lagrangian is still $U(1)$ invariant.
But the lowest energy solution to the eq. of motion is

$$
\begin{aligned}
& -\square \phi+m^{2} \phi-\frac{\lambda}{2}|\phi|^{2} \phi=0 \\
& \longrightarrow \phi=\sqrt{\frac{2 m^{2}}{\lambda}} e^{i \eta}
\end{aligned}
$$

arbitrary phase

Let's choose

$$
\phi=\sqrt{\frac{2 m^{2}}{\lambda}} \equiv v \quad V=\frac{\lambda}{4}\left(|\phi|^{2}-v^{2}\right)^{2}+\text { const. }
$$

(this choice is not special. The phase rotation leaves the Lagrangian invariant.)
our choice
(you can choose anywhere at the bottom)

Now, we rename the fields
$\phi(x)=\left(v+\frac{h(x)}{\sqrt{2}}\right) e_{\substack{i G(x) / \sqrt{2} v \\ \text { phase } \\ \frac{2 m^{2}}{\lambda}}}^{\text {direction }}$
radial direction

mass splitting, NG boson

$$
\begin{aligned}
\mathcal{L}= & \partial_{\mu}\left(\left(v+\frac{h}{\sqrt{2}}\right) e^{i G / \sqrt{2} v}\right)^{*} \partial^{\mu}\left(\left(v+\frac{h}{\sqrt{2}}\right) e^{i G / \sqrt{2} v}\right) \\
& +\frac{\lambda}{4}\left(\left(v+\frac{h}{\sqrt{2}}\right)^{2}-v^{2}\right)^{2}+\text { const. }
\end{aligned}
$$

$$
=\frac{1}{2} \partial_{\mu} h \partial^{\mu} h-\frac{1}{2} \lambda v^{2} h^{2}+\cdots \quad \text { with the correct sign }
$$

$$
+\frac{1}{2}\left(1+\frac{h}{\sqrt{2} v}\right) \partial_{\mu} G \partial^{\mu} G \quad \text { no mass term for } G
$$

spectrum: one massive spin-0 boson $m_{h}^{2}=\lambda v^{2}$
no symmetry one massless spin-0 boson in the spectrum (Nambu-Goldstone boson)

Nambu-Goldstone theorem

(\# of broken symmetry) $=(\#$ of massless NG boson $)$

We saw it in a $U(1)$ example at the classical level, but
this is true at the quantum level.
e.g. pions in QCD

Couple to gauge theory

Let's couple the gauge field A_{μ} to the scalar field.
remember that gauge invariance is necessary for consistency (reducing d.o.f.)

$$
\begin{aligned}
& A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \theta(x) \\
& \phi \rightarrow e^{i e \theta(x)} \phi \\
&\left(\partial_{\mu}-i e A_{\mu}\right) \phi \rightarrow e^{i e \theta} \partial_{\mu} \phi+i e \partial_{\mu} \theta e^{i e \theta} \phi \quad \text { cancel } \\
&-i e A_{\mu} e^{i e \theta} \phi-i e \partial_{\mu} \theta e^{i e \theta} \phi \\
&= e^{i e \theta}\left(\partial_{\mu}-i e A_{\mu}\right) \phi \\
& \equiv e^{i e \theta} D_{\mu} \phi \quad \text { covariant derivative }
\end{aligned}
$$

gauge invariant Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \phi\right|^{2}-V(|\phi|)
$$

broken phase

Now, consider the case with

$$
\begin{aligned}
V(\phi) & =-m^{2}|\phi|^{2}+\frac{\lambda}{4}|\phi|^{4} \\
& =\frac{\lambda}{4}\left(|\phi|^{2}-\frac{2 m^{2}}{\lambda}\right)^{2}+\text { const. } \\
\phi(x) & =\left(v+\frac{h(x)}{\sqrt{2}}\right) e^{i G(x) / \sqrt{2} v}
\end{aligned}
$$

Now, by gauge transformation:

$$
\begin{aligned}
& \phi \rightarrow \phi e^{-i G(x) / \sqrt{2} v}=v+\frac{h(x)}{\sqrt{2}} \\
& A_{\mu} \rightarrow A_{\mu}-\frac{1}{\sqrt{2} e v} \partial_{\mu} G(x) \equiv A_{\mu}^{\prime}
\end{aligned}
$$

New Lagrangian

$$
\left|D_{\mu} \phi\right|^{2}=|\partial \phi|^{2}+e A_{\mu}\left(i \phi^{*} \partial^{\mu} \phi-i \partial_{\mu} \phi^{*} \phi\right)
$$

$$
+e^{2}|\phi|^{2} A_{\mu} A^{\mu} \quad \text { this term vanishes }
$$

$$
=\frac{1}{2} \partial_{\mu} h \partial^{\mu} h
$$

$$
+e^{2}\left(v+\frac{h}{\sqrt{2}}\right)^{2} A_{\mu}^{\prime} A^{\prime \mu}
$$

$$
\begin{aligned}
& -\frac{1}{4} F_{\mu \nu} F^{\mu \nu}=-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu} \quad F_{\mu \nu}^{\prime}=\partial_{\mu} A_{\nu}^{\prime}-\partial_{\nu} A_{\mu}^{\prime} \\
& V(\phi)=\frac{1}{2}\left(\lambda v^{2}\right) h^{2}+\cdots
\end{aligned}
$$

NG boson, $G(x)$, disappeared!

The Higgs mechanism

instead, the mass term for the gauge boson appeared.

$$
\mathcal{L}=\cdots+e^{2} v^{2} A_{\mu}^{\prime} A^{\prime \mu}+\cdots
$$

This Lagrangian describes physics of a massive spin-1 particle and a neutral Higgs boson.

Symmetric phase

$$
V(\phi)=m^{2}|\phi|^{2}+\frac{\lambda}{4}|\phi|^{4}
$$

massless gauge boson + charged particle

Higgs phase

$$
V(\phi)=-m^{2}|\phi|^{2}+\frac{\lambda}{4}|\phi|^{4}
$$

massive gauge boson + Higgs boson

We will learn next that we are in the Higgs phase!

Lecture 3

A little bit of history

We knew there is an approximate symmetry in strong interactions

$$
\psi(x)=\binom{p}{n} \rightarrow e^{i \sigma^{a} \theta^{a}}\binom{p}{n}
$$

isospin symmetry

Yang-Mills theory

in 1954, Yang and Mills proposed a theory where force between isospins as an analogy of force between charges in E\&M.

This theory (the non-abelian gauge theory) predicts massless spin-1 particle.

But... there isn't such a particle in the theory of strong interactions...

Nambu

In 1961, Nambu and Jona-Lasinio proposed a theroy of spontaneous symmetry breaking.

$$
\psi(x)=\binom{p}{n}
$$

Proton and neutron masses come from spontaneous symmetry breaking.

Nambu-Goldstone bosons are identified with the pions.

theorists have thought that

Yang-Mills theory : massless spin-1 bosons
spontaneous symmetry breaking: massless spin-0 bosons

$$
1
$$

this may be a good tool for approximate symmetries such as isospin symmetry

No application to real physics?

Higgs mechanism

In 1964, Higgs and independently by Brout, Englert, Guralnik, Hagen and Kibble have realized that
in the Higgs phase of the gauge theory, there is no massless gauge bosons or Nambu-Goldstone bosons!

In the paper by Higgs, it is mentioned that the model contains a scalar boson, now it is called "the Higgs boson," in such a theory.

Theorists have thought that the mechanism can be applied to the theory of strong interactions.

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland
(Received 31 August 1964)
In a recent note ${ }^{1}$ it was shown that the Goldstone theorem, ${ }^{2}$ that Lorentz-covariant field theories in which spontaneous breakdown of symmetry under an internal Lie group occurs contain zero-mass particles, fails if and only if the conserved currents associated with the internal group are coupled to gauge fields. The

It is worth noting that an essential feature of the type of theory which has been described in this note is the prediction of incomplete multiplets of scalar and vector bosons. ${ }^{8}$ It is to be expected that this feature will appear also in theories in which the symmetry-breaking scalar fields are not elementary dynamic variables but bilinear combinations of Fermi fields. ${ }^{9}$

$$
\begin{align*}
& \text { about the "vacuum" solution } \varphi_{1}(x)=0, \varphi_{2}(x)=\varphi_{0}: \\
& \partial^{\mu}\left\{\partial_{\mu}\left(\Delta \varphi_{1}\right)-e \varphi_{0} A_{\mu}\right\}=0, \tag{2a}\\
&\left\{\partial^{2}-4 \varphi_{0}{ }^{2} V^{\prime \prime}\left(\varphi_{0}{ }^{2}\right)\right\}\left(\Delta \varphi_{2}\right)=0, \tag{2b}\\
&--\mu \nu \quad \text {, } \mu,
\end{align*}
$$

B671 (1964).
${ }^{8}$ Tentative proposals that incomplete $\mathrm{SU}(3)$ octets of scalar particles exist have been made by a number of people. Such a rôle, as an isolated $Y= \pm 1, I=\frac{1}{3}$ state, was proposed for the κ meson (725 MeV) by Y. Nambu and J. J. Sakurai, Phys. Rev. Letters 11, 42 (1963). More recently the possibility that the σ meson (385 MeV) may be the $Y=I=0$ member of an incomplete octet has been considered by L. M. Brown, Phys. Rev. Letters 13. 42 (1964).

The Standard Model

In 1967, Weinberg has realized that the Higgs mechanism can actually be applied by the theory of weak interactions.

Yang-Mills+Nambu+Higgs

somehow, the theory developed from different motivations turns out to the kernel of the electroweak theory.

Surprisingly, the theory of strong interaction turns out to be also the gauge theory in a yet another phase, the confining phase.

and then,

The Standard Model

$S U(3)_{C} \times S U(2)\left\llcorner\times U(1)_{Y}\right.$ gauge theory \uparrow electroweak interaction
strong interaction
$S U(3): 3 \times 3$ special unitary matrix

$$
\begin{gathered}
U^{\dagger} U=1 \\
\operatorname{det} U=1
\end{gathered} \longrightarrow U=e^{i \theta^{a} T^{a}} \begin{array}{r}
8 \text { dimensional group }
\end{array}
$$

$\mathrm{SU}(2)$: 2×2 special unitary matrix

$$
\begin{array}{r}
V^{\dagger} V=\mathbf{1} \\
\operatorname{det} V=\mathbf{1}
\end{array} \longrightarrow V=e^{i \theta^{A} \sigma^{A} / 2} 3 \text { Pauli matrices }
$$

gauge fields

gluon ($\mathrm{a}=1, \ldots, 8$)

$$
\begin{aligned}
g_{\mu}= & g_{\mu}^{a} T^{a} \rightarrow U g_{\mu} U^{\dagger}+\frac{i}{g_{3}} U \partial_{\mu} U^{\dagger} \\
& (3 \times 3 \text { matrix })
\end{aligned}
$$

$\mathrm{SU}(2)$ gauge boson ($\mathrm{A}=1,2,3$)

$$
\begin{aligned}
A_{\mu}= & A_{\mu}^{A} \sigma^{A} / 2 \rightarrow V A_{\mu} V^{\dagger}+\frac{i}{g_{2}} V \partial_{\mu} V^{\dagger} \\
& (2 \times 2 \text { matrix })
\end{aligned}
$$

$U(1)$ gauge boson

$$
B_{\mu} \rightarrow B_{\mu}+\frac{i}{g_{Y}} \partial_{\mu} \theta
$$

all massless at this stage

Quark fields

$$
\begin{equation*}
q=\binom{u}{d} \tag{3,2}
\end{equation*}
$$

$\mathrm{SU}(3): \quad q \rightarrow U q$
SU(2): $q \rightarrow V q$

$$
U(1): \quad q \rightarrow e^{i \theta / 6} q
$$

there are three of them: $\binom{u}{d}\binom{c}{s}\binom{t}{b}$
$u^{c} \quad(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$
$\mathrm{SU}(3): u^{c} \rightarrow u^{c} U^{\dagger}$
SU(2): $u^{c} \rightarrow u^{c}$
$\mathrm{U}(1): u^{c} \rightarrow e^{-2 i \theta / 3} u^{c}$
$d^{c} \quad(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}$
SU(3): $d^{c} \rightarrow d^{c} U^{\dagger}$
$\operatorname{SU}(2): \quad d^{c} \rightarrow d^{c}$
$\mathrm{U}(1): \quad d^{c} \rightarrow e^{i \theta / 3}$

All massless at this stage.

Lepton fields

$$
l=\binom{\nu_{e}}{e}
$$

$(\mathbf{1}, \mathbf{2})_{-1 / 2}$
$\mathrm{SU}(3): \quad l \rightarrow l$
$\mathrm{SU}(2): \quad l \rightarrow V l$
$\mathrm{U}(1): \quad l \rightarrow e^{-i \theta / 2} l$
three generations

$$
\binom{\nu_{e}}{e}\binom{\nu_{\mu}}{\mu}\binom{\nu_{\tau}}{\tau}
$$

$\mathrm{SU}(3): e^{c} \rightarrow e^{c}$
$\mathrm{SU}(2): e^{c} \rightarrow e^{c}$
$\mathrm{U}(1): \quad e^{c} \rightarrow e^{i \theta} e^{c}$
All massless at this stage
(no way to write down mass terms in a gauge invariant way)

gauge interactions

for example, for lepton doublets, gauge invariant kinetic term is

$$
\mathcal{L}_{\text {kin }}=\bar{l} i \gamma^{\mu}\left[\partial_{\mu}-i g_{2} A_{\mu}-i g_{Y}(-1 / 2) B_{\mu}\right] l
$$

covariant derivative

Higgs field

$$
H=\left(\begin{array}{c}
\text { SU(3): } H \rightarrow H \\
H^{+} \tag{1,2}\\
H^{0}
\end{array}\right) \quad \begin{array}{ll}
& \rightarrow \mathbf{1}, \mathbf{2})_{1 / 2} \\
\mathrm{SU}(2): H & \rightarrow V H \\
\mathrm{U}(1): H & \rightarrow e^{i \theta / 2} H
\end{array}
$$

SU(2) doublet complex scalar field
kinetic term

$$
\mathcal{L}_{\text {kin }}=\left|\left(\partial_{\mu}-i g_{2} A_{\mu}-i g_{Y} / 2 B_{\mu}\right) H\right|^{2}
$$

Higgs potential $\quad V=\frac{\lambda}{4}\left(|H|^{2}-v^{2}\right)^{2}$

$$
|H|^{2}=H^{\dagger} H=\left|H^{+}\right|^{2}+\left|H^{0}\right|^{2}
$$

vacuum

One can choose $\quad H=\binom{0}{v}$
remember that other choices are all equivalent to this.
since H is charged under electroweak gauge group, $S U(2)\llcorner\times U(1) y$ is broken

Higgs mechanism for gauge boson masses.

broken gauge group

and unbroken gauge group

gauge transformation

$$
H \rightarrow H=\binom{0}{v+h / \sqrt{2}} \quad \begin{aligned}
& A_{\mu} \rightarrow A_{\mu}^{\prime} \\
& B_{\mu} \rightarrow B_{\mu}^{\prime}
\end{aligned}
$$

One can eliminate three NG bosons.
why three not four?

$$
e^{i \sigma_{3} / 2 \theta} e^{i \theta / 2}=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & 1
\end{array}\right)
$$

One combination of $\mathrm{SU}(2) \times \cup(1)$ leaves $H=\binom{0}{v}$ invariant. There is an unbroken $\mathbf{U}(1)$.

gauge boson masses

$$
\mathcal{L}_{\text {kin }}=\left|\left(\partial_{\mu}-i g_{2} A_{\mu}-i g_{Y} / 2 B_{\mu}\right) H\right|^{2} \quad H=\binom{0}{v}
$$

$$
\begin{aligned}
& \rightarrow\left|\left(g_{2} \frac{\sigma^{A}}{2} A_{\mu}^{A}+g_{Y} \frac{1}{2} B_{\mu} \mathbf{1}\right)\binom{0}{v}\right|^{2} \\
& =\frac{1}{4} g_{2}^{2} v^{2}\left|A_{\mu}^{1}-i A_{\mu}^{2}\right|^{2}+\frac{1}{4} v^{2}\left(g_{2} A_{\mu}^{3}-g_{Y} B_{\mu}\right)^{2} \\
& =\frac{1}{2} g_{2}^{2} v^{2} W_{\mu}^{+} W^{\mu-}+\frac{1}{2} \frac{g_{2}^{2}+g_{Y}^{2}}{2} v^{2} Z_{\mu}^{2} \\
W_{\mu}^{ \pm} & =\frac{1}{\sqrt{2}}\left(A_{\mu}^{1} \mp A_{\mu}^{2}\right) \quad Z_{\mu}=\frac{1}{\sqrt{g_{Y}^{2}+g_{2}^{2}}}\left(g_{2} A_{\mu}^{3}-g_{Y} B_{\mu}\right) \\
m_{W}^{2} & =\frac{1}{2} g_{2}^{2} v^{2} \quad m_{Z}^{2}=\frac{1}{2}\left(g_{2}^{2}+g_{Y}^{2}\right) v^{2}
\end{aligned}
$$

three out of four gauge bosons become massive!

photon

there is one gauge boson left massless.

$$
\mathcal{A}_{\mu}=\frac{1}{\sqrt{g_{Y}^{2}+g_{2}^{2}}}\left(g_{Y} A_{\mu}^{3}+g_{2} B_{\mu}\right)
$$

coupling strength to this combination is

electric charges

$l=\binom{\nu_{e}}{e}$
$Q=T^{3}+Y=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)-1 / 2 \cdot \mathbf{1}=\left(\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right)$
neutrino is neutral, whereas electron has charge -1 .
The doublet gets separated into two different particles!

$$
e^{c} \quad(\mathbf{1}, \mathbf{1})_{1} \quad T^{3}=0, Y=1 \quad \longrightarrow \quad Q=1
$$

Now, e and ec can form a mass term. (later)

Higgs boson mass

$$
\begin{aligned}
& H=\binom{0}{v+h / \sqrt{2}} \\
& V= \frac{\lambda}{4}\left(|H|^{2}-v^{2}\right)^{2} \\
&=\left(\lambda v^{2}\right) \frac{h^{2}}{2}+\frac{3 \lambda v}{\sqrt{2}} \frac{h^{3}}{3!}+\frac{3 \lambda}{2} \frac{h^{4}}{4!} \\
& m_{h}^{2}=\lambda v^{2}=(125 \mathrm{GeV})^{2} \\
& \longrightarrow \lambda \sim 0.5
\end{aligned}
$$

$v=174 \mathrm{GeV}$

The strength of the weak interaction is determined by the Higgs VEV, v.

$$
G_{F}=\frac{\sqrt{2}}{4 v^{2}} \sim 10^{-5} \mathrm{GeV}^{-2} \quad \longrightarrow \quad v=174 \mathrm{GeV}
$$

Yukawa interactions

one can write down terms like Yukawa coupling

$$
\begin{aligned}
\mathcal{L}_{\text {Yukawa }}= & -f_{e}^{i} \tilde{\tilde{H} \cdot\left(e_{i}^{c} l_{i}\right)+\text { h.c. }} \\
& \left(\tilde{H}=i \sigma^{2} H^{*}, A \cdot B=a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

and similar terms for quarks.

$$
\begin{aligned}
& H=\binom{0}{v} \longrightarrow \tilde{H}=\binom{v}{0} \\
& \mathcal{L}_{\text {Yukawa }} \rightarrow-f_{e}^{i} v\left(e_{i}^{c} e_{i}\right)+\text { h.c. }
\end{aligned}
$$

masses for charged leptons, but not for neutrinos.

Great success of the Standard Model (1)

PDG review

$g_{2}, g_{Y}, \lambda, f_{t}, v$
$m_{Z}, G_{F}, \alpha, m_{h}, m_{t}$
 \section*{Great success of the
 \section*{Great success of the Standard Model (2)} Standard Model (2)}

gauge boson mass, fermion mass $\propto v$

$$
H=\binom{0}{v+h / \sqrt{2}}
$$

Higgs coupling
is proportional to its mass

Great success of the Standard Model (3)

You will learn this later.

Mysteries of the Standard Model

You will learn this later.

Summary

tool
 Lagrangian+Path integral correlation functions

Correlation functions, defined by path integral, can be calculated in the perturbation theory if interactions are sufficiently weak.

The electroweak standard model successfully describes the properties of elementary particles.

text books

