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Lecture 1
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Fields and Particles

Particles

Let’s try to understand why these peaks are called  
“particles.”
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Fields (classical)

�(t,x)scalar field:

 ↵(t,x)

Aµ(t,x)

spinor field:

vector field:

Fields are functions of space-time

They can be classified by how they transform under  
the Lorentz transformation.

……

�(t,x)

x

moving
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Quantum Field Theory
quantum mechanics:

q(t) ! q̂(t)

coordinate operator

quantum field theory:
�(t,x) ! �̂(t,x)

note here that the coordinate x is a label. Not an operator!
It’s just a collection of Q.M.

�(t,x1) �(t,x2) …..
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Particles
|Pi

one-particle state with three-momentum P=(px,py,pz)
E =

p
|P|2 +m2special relativity says

energy mass

In QFT, there are also states that describes 
many particles:

|P1,P2, · · · i

(Note: ~ = c = 1 )
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Wave functions
The relation between the wave functions 

in the QM and the state in QFT is 

'(x) = h0|�̂(x)|Pi

vacuum (the lowest energy state)

(x = (t,x))

The functional form can be fixed by the Lorentz covariance. 

'(x) =
p
Ze

�ip·x

h0| ̂
↵

(x)|P,�i =
p
Zu(P,�)e�ip·x

h0|Â
µ

(x)|P,�i =
p
Z✏

µ

(P,�)e�ip·x

these are solutions 
of wave equations. 

(e.g. Klein-Gordon, Dirac,  
Maxwell eq.)
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Scattering amplitudes
M =

out

hP
3

, P
4

|P
1

, P
2

i
in

P1 P2

P3 P4

hP0|Pi = (2⇡)32E�3(P�P0)

normalization

Z
d3P

(2⇡)32E
|PihP| = 1

d�

d⌦
=

1

64⇡2

1

s
|M|2

scattering cross section

s = (p1 + p2)
2
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Correlation functions
h0|T�̂(x)�̂(y)|0i = h0|�̂(x)�̂(y)|0i✓(x0 � y

0)

+h0|�̂(y)�̂(x)|0i✓(y0 � x

0)

two-point function:

Time ordered product

h0|T�̂(x)�̂(y)�̂(z)|0i = h0|�̂(x)�̂(y)�̂(z)|0i
⇥✓(x0 � y

0)✓(y0 � z

0)

+ · · ·

three-point function:
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Particles and Poles
Z

d

4
xh0|T�̂(x)�̂(y) · · · |0ieip·x

=

i
p
Z

p2 �m2
+ i✏

hP|Tˆ�(y) · · · |0i+ non pole terms.

(derive this on the board.)

Contribution from one-
particle states 

to correlation functions
= poles!

location of the pole  =   mass2 of the particle

11



Repeating this procedure
out

hP
3

, P
4

|P
1

, P
2

i
in

(2⇡)4�4(p
1

+ p
2

� p
3

� p
4

)

h0|T�̂(x
1

)�̂(x
2

)�̂(x
3

)�̂(x
4

)|0i|
fourier transform.

=

 
i
p
Z

p21 �m2 + i✏

!�1 
i
p
Z

p22 �m2 + i✏

!�1 
i
p
Z

p23 �m2 + i✏

!�1 
i
p
Z

p24 �m2 + i✏

!�1

x

scattering amplitude

removing poles for initial and final state particles
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Now,

If there are contributions from “intermediate”  
one-particle state, the scattering amplitude has a pole 

at p2 = m2.
h0|T�̂(x1)�̂(x2)|PihP|T�̂(x3)�̂(x4)|0i 6= 0

peak = particle!
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remember, that
We haven’t specified the theory. It is general (and 

actually that’s the definition) that

particles poles!=

mass2 1

p2 �m2 + i✏

location of the pole
=
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How to compute the 
correlation functions
h0|T�̂(x1) · · · �̂(xn)|0i

path integral action

�(t = �1+ i✏,x) �(t = 1� i✏,x)middle

past future

path integral = integrate over all the possible functions
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action sets the theory
S[�] =

Z
d

4
xL(�)

functional of fields Lagrangian density
(Lorentz invariant real function of fields)

For example,

L(�) = 1

2
@µ�@

µ�� 1

2
m2�2 � 1

4!
��4 + · · ·

This factor can be chosen to be 1/2 
by field rescaling. (kinetic term)

we’ll see that this term represents  
the mass of a particle. (mass term)

interaction term
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Free theory
L(�) = 1

2
@µ�@

µ�� 1

2
m2�2

Z
d

4
xh0|T�̂(x)�̂(0)|0ieip·x =

i

p2 �m2 + i✏

(derive this on the board.)
1. we see a pole at m2. particle with mass m!

2. the numerator is “i”. Z factor is unity.

this is why we choose this normalization.
3. fields = particles in free theories.
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Feynman diagrams
For example,

h0|T�(x1)�(x2)�(x3)
2|0i

=
1

Z[0]

�

�iJ(x1)

�

�iJ(x2)

�

�iJ(x3)

�

�iJ(x3)
Z[J ]

���
J=0

=
�

�iJ(x1)

�

�iJ(x2)

�

�iJ(x3)

�

�iJ(x3)
e

�(i/2)J·D�1J
���
J=0

= i(D�1)
x1x2i(D

�1)
x3x3 + i(D�1)

x1x3i(D
�1)

x3x2

x1 x2

x3 x1 x2
x3

(still free theory)
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Perturbation theory
Let’s consider

L(�) = 1

2
@µ�@

µ�� 1

2
m2�2 � 1

4!
��4

free interaction

One can calculate the correlation functions 
as a series expansion of λ. 
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Z[J ] =

Z
[d�]eiS[�]+i

R
d

4
xJ(x)�(x)

=

Z
[d�]

✓
1� i

Z
d

4
x

�

4!
�

4 + · · ·
◆
e

iSfree[�]+i

R
d

4
xJ(x)�(x)

Each terms can be evaluated in the free theory.
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For example,
h0|T�(x1)�(x2)|0i

=
1

Z[0]

Z
[d�]�(x1)�(x2)e

iSfree+i

R
d

4
x(� �

4!�(x)
4)

=
1

Zfree[0]

Z
[d�]�(x1)�(x2)e

iSfree

+
1

Zfree[0]

Z
[d�]�(x1)�(x2)

✓
i

Z
d

4
x

��

4!
�

4

◆
e

iSfree

� 1

Zfree[0]

Z
[d�]�(x1)�(x2)e

iSfree
1

Zfree[0]

Z
[d�]

✓
i

Z
d

4
x

��

4!
�

4

◆
e

iSfree

+O(�2)

x1 x2 xx1 x2+
x

x1 x2+
x

x1 x2-

corrections to mass and Z
cancelfree
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e+ e�

Z

q q̄

1

s�m2
Z + i✏

interaction term: q̄�µqZµ

interaction term: ē�µeZµ

In the real world,

We will learn this soon.
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Lecture 2
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gauge theory
theory to describe “massless” spin-1 particles

photon states |P,±i

vector field Aµ(x) ! Âµ(x)

wave function

(e.g. photon)

h0|Â
µ

(x)|P,±i =
p
Z✏

±
µ

(P)e�ip·x

polarization vector
Aµ is a combination of four independent functions.
but, there are only two degrees of freedom.
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Lagrangian for Aμ
L = �1

4
Fµ⌫F

µ⌫ Fµ⌫ = @µA⌫ � @⌫Aµ

field strength

gauge invariance
Aµ(x) ! Aµ(x) + @µ✓(x)

Fµ⌫(x) ! Fµ⌫(x)

Action is invariant under this transformation.

The same physics is described by
Aµ and Aµ + @µ✓

(electric and magnetic fields)
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physical degrees of freedom
Let Aµ be a field configuration and

@

µ
Aµ(x) = c(x).

The same physical system can be described by

A0
µ = Aµ + @µ✓

@

µ
A

0
µ = c(x) +⇤✓(x)

by choosing 
✓(x) ⇤✓(x) = �c(x)such that

One can restrict ourselves that 
@µAµ = 0

One can still describe all the physical system. 

for an arbitrary scalar  
function ✓(x)

(Lorentz condition)

= 0

.
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Lorentz condition pµ✏µ = 0

Yet unfixed gauge
✏µ ! ✏µ � iCpµ

for arbitrary C, the new      satisfies the Lorentz condition.

✏µ / pµ part can be zero.

Now we consider the wave function:

h0|Â
µ

(x)|Pi = ✏

µ

e

�ip·x p2 = 0

Âµ ! Âµ + @µ✓̂

✏µ

27

(massless)

(ϵμ shifted by pμ describes the same physics)



Therefore,

pµ =

0

BB@

p
0
0
p

1

CCA

✏µ = cL

0

BB@

1
0
0
1

1

CCA +cS

0

BB@

1
0
0
�1

1

CCA

+c+

0

BB@

0
1
i
0

1

CCA +c�

0

BB@

0
1
�i
0

1

CCA

one can set this zero 
(unphysical)

✏µ / pµ

zero by Lorentz condition 
(unphysical)

two physical polarizations

transverse modes

✏µpµ 6= 0

28



massive spin-1 particle
L = �1

4
Fµ⌫F

µ⌫ +
m2

2
AµA

µ

mass term
not gauge invariant anymore.

eq. of motion

@µ(@
µA⌫ � @⌫Aµ) +m2A⌫ = 0

@⌫ @µ(@
µA⌫ � @⌫Aµ) +m2A⌫ = 0( )

identically zero 
@µAµ = 0 (Lorentz condition)

(e.g. W-boson, Z-boson)
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massive case

+c+

0

BB@

0
1
i
0

1

CCA +c�

0

BB@

0
1
�i
0

1

CCA

Longitudinal mode 
(physical)

zero by Lorentz condition 
(unphysical)

transverse polarizations

pµ =

0

BB@

E
0
0
p

1

CCA

+cS

0

BB@

p
0
0

�E

1

CCA✏µ = cL

0

BB@

p
0
0
E

1

CCA
3 d.o.f. in total.
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We will learn soon that

massless spin-1: 2 d.o.f.

massive spin-1: 3 d.o.f.

feeding 1 d.o.f. 
by Higgs fields

Higgs mechanism:
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Symmetry and symmetry 
breaking

U(1) global symmetry

L = @µ�
⇤@µ�� V (�)

V (�) = m2|�|2 + �

4
|�|4

potential termLet’s consider a model:

� ! ei✓� (U(1) transformation)

Here, θ is an arbitrary real number (not a function!)
L ! L

Lagrangian is invariant under the U(1) transformation.
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spectrum of the theory is  
2 massive spin-0 d.o.f. with the same mass “m”

(real part and the imaginary part.)

Symmetry in the spectrum?
Symmetry in the Lagrangian

… actually, not necessarily the case.

L = @µ�
⇤@µ�� V (�)

�m2

2
(�2

1 + �2
2)

=
1

2
@µ�1@

µ�1 +
1

2
@µ�2@

µ�2

� �

16
(�2

1 + �2
2)

2

� =
1p
2
(�1 + i�2)

Also, there is a conserved charge “ɸ” number.
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Spontaneous symmetry 
breaking

V (�) = �m2|�|2 + �

4
|�|4

Consider the case with 

Lagrangian is still U(1) invariant.

But the lowest energy solution to the eq. of motion is

�⇤�+m2�� �

2
|�|2� = 0

� =

r
2m2

�
ei⌘

arbitrary phase
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Let’s choose
� =

r
2m2

�

(this choice is not special. The phase rotation 
leaves the Lagrangian invariant.)

our choice

Now, we rename the fields

�(x) = (v +
h(x)p

2
)eiG(x)/

p
2v

r
2m2

�h(x)
G(x) radial direction

phase 
 direction

(you can choose anywhere at the bottom)

⌘ v V =
�

4

�
|�|2 � v2

�2
+ const.
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mass splitting, NG boson
L = @µ

✓✓
v +

hp
2

◆
eiG/

p
2v

◆⇤
@µ

✓✓
v +

hp
2

◆
eiG/

p
2v

◆

+

�

4

 ✓
v +

hp
2

◆2

� v2
!2

+ const.

=
1

2
@µh@

µh

+
1

2

✓
1 +

hp
2v

◆
@µG@µG

�1

2
�v2h2 + · · ·

mass term 
with the correct sign

no mass term for G

spectrum: one massive spin-0 boson m2
h = �v2

one massless spin-0 boson
(Nambu-Goldstone boson)

no symmetry
in the spectrum
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Nambu-Goldstone theorem
(# of broken symmetry) = (# of massless NG boson)

this is true at the quantum level.

We saw it in a U(1) example at the classical level, 
but

e.g. pions in QCD
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Couple to gauge theory
Let’s couple the gauge field Aμ  to the scalar field.

Aµ(x) ! Aµ(x) + @µ✓(x)

Gauge transformation

(@µ � ieAµ)�

� ! eie✓(x)�

! eie✓@µ�+ ie@µ✓e
ie✓�

= eie✓(@µ � ieAµ)�

⌘ eie✓Dµ� covariant derivative

remember that gauge invariance 
is necessary for consistency 

(reducing d.o.f.)

�ieAµe
ie✓�� ie@µ✓e

ie✓�

cancel
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gauge invariant Lagrangian
L = �1

4
Fµ⌫F

µ⌫ +|Dµ�|2 � V (|�|)

Aµ(x) ! Aµ(x) + @µ✓(x)

� ! eie✓(x)�

V (�) = m2|�|2 + �

4
|�|4For

this Lagrangian describes physics of a 
charged spin-0 particle coupled to the massless photon.

�+

��

�
(@µ + ieAµ)�

⇤(@µ � ieAµ)�

�+
��

�
�

,
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broken phase

V (�) = �m2|�|2 + �

4
|�|4

Now, consider the case with

=

�

4

✓
|�|2 � 2m2

�

◆2

+ const.

�(x) = (v +
h(x)p

2
)eiG(x)/

p
2v

Now, by gauge transformation:

� ! �e�iG(x)/
p
2v = v +

h(x)p
2

Aµ ! Aµ � 1p
2ev

@µG(x) ⌘ A0
µ
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New Lagrangian

+e2|�|2AµA
µ

|Dµ�|2 = |@�|2 + eAµ(i�
⇤@µ�� i@µ�

⇤�)

=
1

2
@µh@

µh

+e2
✓
v +

hp
2

◆2

A0
µA

0µ

�1

4
Fµ⌫F

µ⌫ = �1

4
F 0
µ⌫F

0µ⌫ F 0
µ⌫ = @µA

0
⌫ � @⌫A

0
µ

V (�) =
1

2
(�v2)h2 + · · ·

NG boson, G(x), disappeared!

this term vanishes

41



The Higgs mechanism

h(x)
G(x)

The NG mode 
disappeared 

(unphysical, eaten)

instead, the mass term for the gauge boson appeared.

L = · · ·+ e2v2A0
µA

0µ + · · ·

This Lagrangian describes physics of 
 a massive spin-1 particle and a neutral Higgs boson.
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Symmetric phase

V (�) = m2|�|2 + �

4
|�|4

massless gauge boson + charged particle

Higgs phase

V (�) = �m2|�|2 + �

4
|�|4

massive gauge boson + Higgs boson

We will learn next that we are in the Higgs phase!
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Lecture 3
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A little bit of history
45

We knew there is an approximate symmetry 
in strong interactions

isospin symmetry



Yang-Mills theory
46

in 1954, Yang and Mills proposed a theory 
where force between isospins as an analogy  

of force between charges in E&M. 

This theory (the non-abelian gauge theory) predicts 
massless spin-1 particle.

But… there isn’t such a particle in the theory of strong 
interactions…



Nambu
47

In 1961, Nambu and Jona-Lasinio proposed a theroy 
of spontaneous symmetry breaking.

Proton and neutron masses come from spontaneous 
symmetry breaking.

Nambu-Goldstone bosons are identified with the pions.



theorists have thought that
48

Yang-Mills theory : massless spin-1 bosons

spontaneous symmetry breaking: massless spin-0 bosons

No application to real physics?

this may be a good tool for approximate symmetries 
such as isospin symmetry



Higgs mechanism

49

In 1964, Higgs and independently by Brout, Englert, Guralnik, 
Hagen and Kibble have realized that

in the Higgs phase of the gauge theory, 
there is no massless gauge bosons or Nambu-Goldstone 

bosons!
In the paper by Higgs, it is mentioned that 

the model contains a scalar boson, now it is called  
“the Higgs boson,” in such a theory.

Theorists have thought that the mechanism can be  
applied to the theory of strong interactions.



…..

….



The Standard Model
51

In 1967, Weinberg has realized that 
the Higgs mechanism can actually be applied by 

the theory of weak interactions.

Yang-Mills+Nambu+Higgs

somehow, the theory developed from different motivations 
turns out to the kernel of the electroweak theory. 

Surprisingly, the theory of strong interaction turns out to be 
also the gauge theory in a yet another phase,  

the confining phase.



and then,
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The Standard Model
SU(3)C x SU(2)L x U(1)Y gauge theory

strong interaction
electroweak interaction

SU(2): 2x2 special unitary matrix

SU(3): 3x3 special unitary matrix
U†U = 1
detU = 1

U = ei✓
aTa

8 dimensional group

V †V = 1
detV = 1

V = ei✓
A�A/2

3 dimensional group

Pauli matrices

Gell-Mann matrices
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gauge fields
gµ = gaµT

a ! UgµU
† +

i

g3
U@µU

†
gluon (a=1,…,8)

(3x3 matrix)
SU(2) gauge boson (A=1,2,3)

(2x2 matrix)

Bµ ! Bµ +
i

gY
@µ✓

U(1) gauge boson

Aµ = AA
µ�

A/2 ! V AµV
† +

i

g2
V @µV

†

all massless at this stage
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Quark fields
q =

✓
u
d

◆
(3,2)1/6

q ! Uq

q ! V q

q ! ei✓/6q

SU(3):
SU(2):

U(1):

there are three of them:
✓

u
d

◆✓
c
s

◆✓
t
b

◆

uc (3̄,1)�2/3

SU(3):
SU(2):

U(1):

uc ! ucU†

uc ! uc

uc ! e�2i✓/3uc

dc (3̄,1)1/3

SU(3):
SU(2):

U(1):

dc ! dcU†

dc ! dc

dc ! ei✓/3

All massless at this stage.
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Lepton fields
l =

✓
⌫e
e

◆
(1,2)�1/2

SU(3):
SU(2):

U(1):

l ! l

l ! V l

l ! e�i✓/2l✓
⌫e
e

◆✓
⌫µ
µ

◆✓
⌫⌧
⌧

◆
three generations

ec (1,1)1
SU(3):
SU(2):

U(1):

ec ! ec

ec ! ec

ec ! ei✓ec

All massless at this stage  
(no way to write down mass terms in a gauge invariant way)
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gauge interactions

covariant derivative

for example, for lepton doublets,  
 gauge invariant kinetic term is

Lkin = l̄i�µ [@µ � ig2Aµ � igY (�1/2)Bµ] l

l
l̄

g2

Aµ

l
l̄

Bµ

�gY /2
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Higgs field
H =

✓
H+

H0

◆
(1,2)1/2

SU(2) doublet complex scalar field

kinetic term Lkin = |(@µ � ig2Aµ � igY /2Bµ)H|2

Higgs potential V =
�

4

�
|H|2 � v2

�2

|H|2 = H†H = |H+|2 + |H0|2

SU(3):
SU(2):

U(1):

H ! H

H ! V H

H ! ei✓/2H
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vacuum
H =

✓
0
v

◆
One can choose

remember that other choices are all equivalent to this.

SU(2)L x U(1)Y is broken

since H is charged under electroweak gauge group,

Higgs mechanism for gauge boson masses.
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broken gauge group 
and unbroken gauge group

H ! H =

✓
0

v + h/
p
2

◆ Aµ ! A0
µ

Bµ ! B0
µ

gauge transformation

One can eliminate three NG bosons.

why three not four?
ei�3/2✓ei✓/2 =

✓
ei✓ 0
0 1

◆

One combination of SU(2)xU(1) leaves H =

✓
0
v

◆

invariant. There is an unbroken U(1).
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gauge boson masses
Lkin = |(@µ � ig2Aµ � igY /2Bµ)H|2 H =

✓
0
v

◆

!
����

✓
g2

�A

2
AA

µ + gY
1

2
Bµ1

◆✓
0
v

◆����
2

=
1

4
g22v

2
��A1

µ � iA2
µ

��2

=
1

2
g22v

2W+
µ Wµ� +

1

2

g22 + g2Y
2

v2Z2
µ

W±
µ =

1p
2
(A1

µ ⌥A2
µ) Zµ =

1p
g2Y + g22

(g2A
3
µ � gY Bµ)

+
1

4
v2(g2A

3
µ � gY Bµ)

2

m2
W =

1

2
g22v

2
m2

Z =
1

2
(g22 + g2Y )v

2

three out of four gauge bosons become massive!
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photon
there is one gauge boson left massless.

coupling strength to this combination is 

l l̄ l l̄

Bµ

Aµ =
1p

g2Y + g22
(gY A

3
µ + g2Bµ)

⇥ g2p
g2Y + g22

⌘ cos ✓W⇥ gYp
g2Y + g22

⌘ sin ✓W
A3

µ

g2�
3/2 +

=

l l̄

Aµ

e =
g2gYp
g2Y + g22

gY Y

(T 3 + Y )e

= g2T
3

Q electric charge
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l =

✓
⌫e
e

◆

T 3 + Y =

✓
1/2 0
0 �1/2

◆
� 1/2 · 1 =

✓
0 0
0 �1

◆

neutrino is neutral, whereas electron has charge -1.
The doublet gets separated into two different particles!

ec (1,1)1 T 3 = 0, Y = 1

Q =

Q = 1

Now, e and ec can form a mass term.

electric charges

(later)
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Higgs boson mass
H =

✓
0

v + h/
p
2

◆

V =
�

4

�
|H|2 � v2

�2

= (�v2)
h2

2
+

3�vp
2

h3

3!
+

3�

2

h4

4!

m2
h = �v2 = (125 GeV)2

� ⇠ 0.5
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v = 174GeV
µ�

e�

⌫µ

⌫̄e

W�g2

g2

1

q2 �m2
W + i✏

⇠ �1/m2
W = � 2

g22v
2

g2 cancels

The strength of the weak interaction is  
determined by the Higgs VEV, v.

GF =

p
2

4v2
⇠ 10�5 GeV�2 v = 174 GeV
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Yukawa interactions
LYukawa = �f i

eH̃ · (eci li) + h.c.

one can write down terms like

and similar terms for quarks.

H̃ = i�2H⇤ A ·B = a1b2 � a2b1( ),

Yukawa coupling 
constant

H =

✓
0
v

◆
H̃ =

✓
v
0

◆

LYukawa ! �f i
ev(e

c
iei) + h.c.

masses for charged leptons, but not for neutrinos.
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Great success of the 
Standard Model (1)

PDG review

g2, gY , �, ft, v mZ , GF ,↵,mh,mt
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Great success of the 
Standard Model (2)

gauge boson mass, fermion mass / v

H =

✓
0

v + h/
p
2

◆
Higgs coupling 

is proportional to 
its mass

68



Great success of the 
Standard Model (3)

You will learn this later.
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Mysteries 
of the Standard Model

You will learn this later.
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Summary

Correlation functions, defined by path integral, can be 
calculated in the perturbation theory if interactions are 

sufficiently weak.

 experiment A

tool
Lagrangian+Path integral

 experiment B

theory

correlation functions

The electroweak standard model successfully describes 
the properties of elementary particles.

71



text books
72


