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Sig+Bkg Fit (m =126.5 GeV)
Bkg (4th order polynomial)

ATLAS PLB 716, 1 (2012)
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Outline

& Basic elements
e some vocabulary
e Probability axioms

e some probability distributions

& Two approaches: Frequentist vs. Bayesian

@ Hypothesis testing

@ Parameter estimation

/A

& Other subjects — “nuisance”, “spurious”, “look elsewhere”



a quick review of Lecture 1

& Probability vs. Statistics
@ PDF (and CDF)

e expectation values, covariance matrix, correlation coefficients
& Frequentist vs. Bayesian

@ Some theorems

e LLN, CLT, Neyman-Pearson lemma, Wilks theorem, etc.



Freq. vs. Bayes.

Two interpretations of Probability

e While the classic or frequentist approach can lead to a well-defined
probability for a given situation, it is not always usable.

-> In such circumstances one is left with only one option: Bayesian.

e When data are scarce => these two approaches can give somewhat
different predictions,

but given sufficiently large data sample, they give pretty much the
same conclusion. In that case the choice between the two may be
regarded arbitrary.

® Perhaps, we may choose one for the main result, and try the other for
a cross-check.



Hyp. Testing

Hypothesis Testing




Hyp. Testing

Probability P(H|%)

e In the frequentist approach, we do not, in general, assign probability of a
hypothesis itself.

Rather, we compute the probability to accept/reject a hypothesis assuming
that it (or some alternative) is true.

e In Bayesian, on the other hand, probability of any given hypothesis (degree of
belief) could be obtained by using the Bayes’ theorem:

. P(xH)=(H)
PR = T p(RH yr (1) dET

which depends on the prior probability 7 (H)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016



Hyp. Testing

Hypothesis Testing

A hypothesis H specifies the probability for the data
(shown symbolically as X here),
often expressed as a function f(x|H)

The measured data x could be anything:

* observation of a single particle, a single event, or an entire experiment
* uni-/multi-variate, continuous or discrete

the two kinds:

* simple (or “point”) hypothesis — f(x|H) is completely specified
* composite hypothesis — H contains unspecified parameter(s)

The probability for x given H is also called the likelihood of the hypothesis,
written as L(X|H)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016



Hyp. Testing

Critical Region - what it is

Consider e.g. a simple hypothesis Hy and an
alternative H;

. Q
A (frequentist) test of Ho: data space

Specify a critical region w of the data space () such
that, assuming Hj is correct, there is no more than
some (small) probability « to observe data in w

P()Z" ~- W’HO) < «

e e e ., critical region w
a: “size” or “significance level” of the test

If X is observed within w, we reject Hy with a
confidence level 1 — «

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 8



Hyp. Testing

Critical Region - how to choose

e In general, 4 an oo number of possible critical regions that give the same
significance level «

e Usually, we place the critical region where there is a low probability « for
x € w if Hy is true, but high if the alternative (H;) is true

GO
S
X
-
v
_/

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016



Hyp. Testing

Test statistic

e The boundary surface of the critical region

for an n-dim. data space can be defined by

g(@®)

an equation of the form:

15 F
t(xlp . ,Xn) — t.
where t(xq, -+ ,X,) is a scalar test statistic. |
e For the test statistic t, we can work out the 05

PDFs g(t|Hp), g(t|H1), etc.

e Decision boundary is now given by a signle
‘cut’ on t, thus defining the critical region

= for an n-dim. data space, the problem is
reduced to a 1-dim. problem

Y. Kwon (Yonsei Univ.)

Practical Statistics for Particle Physicists

I L) 1 |

)

cut
accept H, «p reject H,

Oct. 12-25, 2016
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Hyp. Testing

lype-1, Type-1I errors

e Rejecting Hy when it is true is called the Type-I error

(Q) Given the significance « of the test, what is the maximum probability of
Type-I error?

e We might also accept Hy when it is indeed false, and an alternative H; is true.
This is called the Type-II error

The probability 5 of Type-II error:

P(xXcQ—wlH;) =f

1 — 3 is called the power of the test with respect to H;

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 11



Hyp. Testing

lype-1, Type-1I errors

H . chosen

H0 true Correct decision,
Prob = 1-a

H, true Type Il error,
Prob= 3

H . chosen

Type | error,
Prob = o

Correct decision,
Prob = 1-

Optimal decision: minimize B for given a

» The size of the test is Pr (Y € R )=a.

» The power of the test is Pr (Y € R )=1-f.

Y. Kwon (Yonsei Univ.)
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from an FAPPS09 Lecture by S. T Jampens

Practical Statistics for Particle Physicists

Oct. 12-25, 2016
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Hyp. Testing

exercise on Type-I, II errors

Since B — K™~ has much higher branching fraction than B — p~, the former can be a
serious background to the latter. It is crucial to understand the “efficiency” and “fake rate”
of K/m identification system of your experiment in this study. The figure below shows the
Mk invarianbt mass distribution, where one of the pion mass (in po — 17~ decay) is
replaced by the Kaon mass, for the B — p°~ signal candidates (Belle, PRL 2008).

B — p Express the following observables in Type-I & Type-II
errors. What are Ho & Hi, for each case?

W
o
|
——

b
o
T I T T T T T T T T T T T

s 3, ® fi+_ .+ = probability of misidentifyinga K™ asa«

Entries/(10 MeV/c?)
N
o

an . k
e o - T ttaga.. - 3
P R A LT T reppuppa s S PP T .

0.8 092 104 116 ® ¢+ = prob. of identifying a K™ correctly as a K™
+ +

(=

M, _(GeV/c?) ® ¢ . = prob. of identifying a #™ correctly as a =

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013

® f +_x+ = probability of misidentifying a 7 asa K™

_I_
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Hyp. Testing

Defining a multivariate critical region

with “square cuts”
xr;, < C;
Tj < Cj

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 14



Hyp. Testing

Defining a multivariate critical region

some more sophisticated ways

linear or nonlinear

(ex) Fisher discriminants, etc. (ex) artificial neural net, etc.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 15



Hyp. Testing

algorithms for a multivariate critical region

& Many (old or new) methods for finding decision criteria

® Fisher discriminants
® Artificial neural networks
® Boosted decision trees

e Kernel density methods

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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Software for multivariate analysis

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, [. Narsky, physics/0507143

Further info from www.hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA

Currently appears project no longer to be supported

G. Cowan CERN Academic Traming 2010 / Statistics for the LHC / Lecture 1 page 51



Hyp. Testing

How to choose an optimal test statistic

eyman -Pearson lemm >

For a test of size o of the simple hypothesis H,
to obtain the highest power w.r.t. the simple alternative Hi,
choose the critical region w such that the likelihoot ratio satisfies

P(X|H1)

S >k
P(x|Ho)

everywhere in w and is < k elsewhere,
where k is a constant chosen for each pre-determined size «.

e Equivalently, the optimal scalar test statistic is

t(x) = P(x|H1)/P(X|Ho)

(Note) Any monotonic function of this leads to the same test.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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ENES

an application of Neyman-Pearson Lemma

e
S
&
R -
Q‘ -
I s |
Exp5 data Tt ; p ‘,' S
a (TOF) = 100ps ',' § 1
P<1 25GeV/c l' S
- n
» /|
R L) x
N p 10

\

log,q( p (GeVic) )

10 R

10 ¢

- ® K track (data)

10 F

Dato: Exp7 run 6 — 1897 (0426+0430+0517 reprocess)
MC: b20000517_1555

K track (MC%

A 7 trock (dato)
[ mtrack (MC
A

BRSNS BRSNS N =Y h
0.1

Prob(k:pi)

p, = p*P/*  pTOF  pCh e g (i =1 or K)

[

For optimal statistic, construct the likelihood ratio
Ry /= = Pk /P; (or any ftn. that is monotonic to it)

Belle actually used R/, = Pk /(Prx + Pr)sothat 0 < Rg/, <1

19



Hyp. Testing

W wW¢

P(x|f;)

> kq
P(x|Ho)

Consider the contour of the likelihood ratio that has size a given
size (eg. probability under Ho is 1-(x)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016

Proof (graphical)

20



Hyp. Testing

P(\_|Ho) = P(~/|Ho)

Now consider a variation on the contour that has the same size
(eg. same probability under Ho)

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016

Proof (graphical)

21



Hyp. Testing

P(\_|Hy) = P(_/ |Hy)
P(xz|Hy)
P(xz|Hy)

P(x|H)
P(x|Hp)

< kg

P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Ho)k,

P(\_|H1) < P(_/|H1)

> kg

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016

Proof (graphical)

22



(Quiz) With Neyman-Pearson lemma, we may have THE
way to optimize the critical region (“cut”). Then why
should we bother with multivariate analyses such as
artificial neural network, etc.?

P(_/|Hy) (Ans.) The modeling of P(x|H) may
not be perfect, if the correlations

are not taken properly into account.
This will become more serious for
higher dimensions of x.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 23



Hyp. Testing

Significance of 51gnal

Mode Yo e (%) B, (%) S1gn1f1canc B(10~7)
(a) BY - n,a° 3061122 184 3941 | | 56122
(b) B® = n3,2° 0.518¢ 142 2292 , 0.2728
Combined ! 4177

60F ——
: 0 0
~ 50 : ~ B %n&tn N
RS RS
% 40F >
G O ]
S -
2 30f S 38
S . - —
< 20F O .
s [ s ot
L% 10; L%) 10:- N
O i ¢ S - O B . . , | __Hﬁ_.-.-..---_-3-=."'f:"'1"":"'~ .
5.24 . . 5.24 5.26 5.28
M. (GeV/c?) M. (GeV/c?)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 24



Hyp. Testing

the p-value

'

Very un-likely
observations

Probability density

More likely observation

Y

P-value

[

Very un-likely
observations

Observed

data point\
o

Set of possible results

By User:Repapetilto @ Wikipedia & User:Chen-Pan Liao @ Wikipedia - File:P value.png, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=36661887

In short, p-value is the ‘size’ of a test against a given hypothesis.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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Hyp. Testing

the p-value

e With p-value, we express the level of agreement b/w data and H

p = probabilty, under assumption of H, to observe data with equal or lesser
compatibility with H, in comparison to the data we obtained

+ the probability that H is true A

P(observation | hypothesis) # P(hypothesis | observation)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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Remember?

Gaussian (Normal) distribution

Hyp. Testing

TMath: :Prob(02,1)

o 0
0.2 1.280
0.1 1.640
0.05 1.960
0.01 2.580
0.001 3.290
10~ 3.890

Area of the tails a outside 4+ from the mean of a Gaussian

f(x; w,0)
o )
1-a 0.3173 lo
4.55 x102 20
/9 /2 2.7 x1073 30
6.3x10° 4o
B 5.7x10~7 %
(x-w)/o 2.0x10~? 60
Table 36.1:
distribution.

27



Hyp. Testing

Significance and the p-value

Often we quote the significance Z, for a given p-value

e Z = the number of standard dev. that a Gaussian random variable
would fluctuate in one direction to give the same p-value

o
_ |
Zo x
OO 1 —582/2
P = /Z \/2?6 dr =1—-®(Z) 1 - TMath: :Freq
Z =&"1(1-p) TMath: :NormQuantile

(Ex) Z =5 (a “5-sigma effect”) < p =2.9 x 10”7

28



Hyp. Testing

p-value example: a fair coin?

We toss a coin N = 20 times and get n = 17 heads.
Test whether this coin is ‘fair’ or not.

Hypothesis Ho: the coin is fair (4 = 50% chance for head)

29



Hyp. Testing

Example: significance of a signal

We observe n events; n=n,+n;
Ny, evedds from Known lmc,C?me
Ns 577““2 eveuts (+ be raferned from data D

Assum. beth Ns , N, one Potssom .

| , _ (Ss+b)" _-(s+b)
P(h lS.lD) - "—)1—,—2—‘ <

Suppose b = 0.5 (assume precise), and we observe neps = 5.
Can we claim evidence for a signal excess?
Give p-value for the null hypothesis s = 0.

30



1983 Korean Baseball Champion HaiTai Tigers’ Lineup

Quiz — BA OBA SLG HR RBI SB
1 21U CF 275 345 364 2 26 48

2 M E 33 257 320 339 3 34 13

3 aath 1B 327 401 443 7 40 13

4 A}t DH 280 371 552 22 59 2

5 HEQ LF 350 404 524 1} 44 7

6 HEE RF 248 308 362 10 43 1l

7 AT E C 262 313 453 12 B0 2

i eT 3B 236 292 309 2 1 3

9 A 2B 266 308 323 1 23 16

(observation) Six out of 9 starting hitters have family name ‘Kim’.
(fact) According to census, ~20% of all Koreans have family name ‘Kim’.

(Hypothesis to test) The manager of 1983 Tigers (himself a ‘Kim’) has a
bias toward players with family name ‘Kim’.

31



Hyp. Testing

Example: comparison of hypotheses

Given a set of data resulting from the measurement of some observable

Q={-1.0,-0.9,-0.7,—0.1,0.0,0.1,0.2,0.5,0.6, 1.0}

where the total number of data N = 10, determine which of the following
models is a better description of the data:

e H, : the data are distributed according to a Standard Gaussian (@ =
0, o =1);

e H, : the data are uniformly distributed over |—1,+1]

For a test statistic, we may use

R — P(Hp|data) B P(data|Hy)P(Hp) R 2 1 '?'?
~ P(H|data) P(data|H;)P(H;)

32



Hyp. Testing

Example: comparison of hypotheses

Given a set of data resulting from the measurement of some observable

Q={-1.0,-0.9,-0.7,—0.1,0.0,0.1,0.2,0.5,0.6, 1.0}

(z — i i R - - w; P(data| Hp) Pl(data|H))
(=1 : —~1.0 0.242 0.1
NP (it [HLY) P —09  0.266 0.1
‘ —07 0312 0.1
== ot IH ) H"’) 01 0.397 0.1
= A H 0.0  0.399 0.1
n P (da ) FLH, ) 0.1 0.397 0.
o, 0.2 0.391 0.
= Tr N CT(X 0,1) 05 0352 0.
= 06  0.333 0.1
1.0 0242 0.1

taken from A. Bevan’s book



Hyp. Testing

model-independent test?

e In general, we cannot find a single critical region that gives the maximum
power for all possible alternatives (no “uniformly most powerful” test)

e In HEP, we often try to construct a test of the Standard Model as Hy (or
sometimes called “background only”)

such that we have a well specified false discovery rate o (=prob. to reject Hy
when it is true),

and high power w.r.t. some interesting alternative H;, e.g. SUSY, Z’, etc.

e But, there is no such thing as a model-independent test.

Any statistical test will inevitably have high power w.r.t. some alternatives
and less for others

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 34



from ‘Big Bang Thec'iry’



2016 Review of Particle Physics.
Please use this CITATION: C. Patrignani et al.(Particle Data Group), Chin. Phys. C, 40, 100G

t —> Wb
~ T(t—> Wb)T(t—>Wg(g=b,s,d)

OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.

DOCUMENT ID TECN COMMENT
OUR AVERAGE Error includes scale factor of 1.5.
1 AALTONEN 2014G  CDF ¢+ Hr + > 2j (0,1,
2 KHACHATRYAN 2014E CMS CC +Hr +2,3,4i (0 —
3 AALTONEN 2013G  CDF £+ Hr + > 3jets (2
4 ABAZOV 2011X DO

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 36



Intervals

Measurement with errors

Let's say we are reporting a single measurement
r=a=xb
Frequentist interpretation

® Repeating the measurement many times under identical conditions
(“ensemble”), the estimated interval will vary each time. In 68.3%
of those results, the true value of x will lie within the interval.

Result of each measurement is a sampling from a Gaussian
distribution G(p,0)

® We may not know 1

® We have some idea about ¢ -- experimental sensitivity

37



Intervals

when u=*o is not enough...

If the PDF of the estimator is not Gaussian, or
if there are physical boundaries on the possible values of the
parameter,

one usually quotes an interval given a confidence level.

38



a Bayesian procedure for intervals

Oup
1-&:/ p(0]2) do

O1o
If the physical value is non-negative, 7(s) = <( 0 s <0
one may choose a prior: 1 s >0
s+0)" _
Likelihood for s, given b, is P(nl|s) = ( - ) e~ (s10)

If what we seek is of a very low (or no) signal, interval = UL

Then,

ca= [ J2% P(nls) w(s) ds
: B /—oo B [25 P(n|s) m(s)ds

FX—21; inverse of the CDF > Sup — %FX—Q]_ [1 o Oé, 2(77/ _I_ 1)] o b




(Ex) UL on Poisson parameter

o Consider again the case of observing n ~ Poisson(s + b).
Suppose b = 4.5 and ng,; = 5. Find upper limit on s at 95% CL.

e Relevant alternative is s = O, resulting in critical region at low n.

e The p-value of hypothesized s is P(n < ngys; S, b).
Therefore, the upper limit s, at CL = 1 — « is obtained from

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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Intervals

Frequentist “confidence intervals”

on repeated measurements

Remember frequentist approach is always about repeated measurements!
“confidence interval”

= intervals constructed to include the true value of the
parameter with a probability = (a specified value)

41



Frequentist “confidence intervals”

L2
Consider a pdf f(x;0) Plx1 <z <z9:0)=1—00 = / f(x;0) dx
x]

parameter 0

e X : outcome of an experiment

e 0 : unknown parameter for which we set the interval

¥ the confidence interval,

<

—— xl(:eo) xzéﬂo)

Possible experimental values x

given a measured
outcome of g = $1(6’0)

“Neyman construction™

42



for Frequentist UL, the 90% (or whatever) integration
is done above the UL

43



for Frequentist UL, the 90% (or

N A 7 whatever) integration is done
! above the UL
AN
:
3
UL
N=o
1 —a =90% 1 —a=95% 1 —a =90% 1 —a=95%
n Hlo Hup Hlo Hup n H1 2 H1 H2
0 — 2.30 — 3.00 0 0.00 2.44 0.00 3.09
1 0.105 3.89 0.051 4.74 1 0.11 4.36 0.05 5.14
2 0.532 5.32 0.395 6.30 2 0.93 5.91 0.36 6.72
3 1.10 6.68 0.818 7.75 3 1.10 7.42 0.82 8.25
4 1.74 7.99 1.37 9.15 4 1.47 8.60 1.37 9.76
Table 38.3: Table 38.4: Feldman-Cousins interval
naive frequentist interval Phys. Rev. D57, 3873 (1998)

“unified approach” 44



Confidence interval from inversion of a test

e For confidence intervals for a parameter 6, define a test of size « for
the hypothesized value 6 (repeat this for all 9)

- If the observed data falls in the critical region, reject the value 6.

- The values that are not rejected constitutes a confidence interval for p at
confidence level CL =1 — a.

e By construction the confidence interval will contain the true value of 6
with probability > 1 — a.

* The interval depends on the choice of the test (critical region).

* If the test is formulated in terms of a p-value, py, then the confidence
interval represents those values of 6 for which py > «.

* To find the end points of the interval, set py = « and solve for 6.

45



Intervals

Coincidence of frequentist and Bayesian intervals

If the expected background is zero,

the Bayesian upper limit (for a Sup = %FX_Ql p,2(n+1)]—b
Poisson RV) becomes equal to the

limit determined by frequentist = %Fx_zl(l —a;2(n+ 1))
approach.

For more details, you may read e.g.
a statistics review in PDG. http:/pdg.Ibl.gov/2015/reviews/rpp2015-rev-statistics.pdf

46


http://pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf

Parameter Estimation




Basics of parameter estimation

e The parameters of a PDF are constants characterizing its shape, e.g.

flx;0) = %6_’“/ 7

where 6 is the parameter, while x is the random variable.

e Suppose we have a sample of observed values, X.
We want to find some function of the data to estimate the
parameter(s): 6(x).
Often 6 is called an estimator.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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__Param. Est.__

Properties of estimators

e If we were to repeat the entire measurement, the set of estimates
would follow a PDF:
best

1 e
large
variance

g(0;0)

."/—-\'.

biased

A

- We want small (or zero) bias (= syst. error): b = E|f] — 0
- and we want a small variance (=- stat. error): V|0

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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Bias vs. Consistency

unbiased biased
+
~—
D
>—
E
-3 N
—
8 N N
0( ) 9()

inconsistent

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 50



Likelihood function

e Suppose the entire result of an experiment (set of measurements) is a
collection of numbers X, and suppose the joint PDF for the data X is a
function depending on a set of parameters : f (¢; 9)

e Evaluate this function with the measured data x, regarding this as a
function of 6 only. This is the likelihood function.

— —

L(0) = f(x;0) (x,fixed)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016
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The likelihood function for i.i.d. data

i.i.d. = independent and identically distributed

e Consider n independent observations of {x : xy,--- ,x,}, where x

follows f(x, 6).
The joint PDF for the whole data sample is:

f(x17 Ty X (9_)) — Hf(xi; 5)
i=1
e In this case, the likelihood function is
L(6) = H f(xi;0) (x; constant)
i=1

So we define the max. likelihood (ML) estimator(s) to be the
parameter value(s) for which the L becomes maximum.

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists Oct. 12-25, 2016 52



ML estimator example: fitting to a straight line

e Suppose we have a set of data:
(Xi,yi, Ui), = 1, I 1

e Modeling: y; are independent and follow
Vi ~ G(u(x;),oi) (G: Gaussian) where
u(x;) are modelled as
,u(x; (9(), (91) — (9() + 91)(‘
Assume x; and o; are known.

e Goal: to estimate 6
Here, let’s suppose we don’t care about
¢, (an example of a nuisance parameter)

Y. Kwon (Yonsei Univ.) Practical Statistics for Particle Physicists

Y

1.8
* data

16+ — model

1.4///1/1’%/
I
1

1.2

0.8

Oct. 12-25, 2016 53



ML fit with Gaussian data

e In this example, the y; are assumed independent, so that likelihood

function is a product of Gaussians:

e Then maximizing L is equivalent to minimizing

i.e., for Gaussian data, ML fitting is the same as the method of least

squares

Y. Kwon (Yonsei Univ.)

L |
Hfgl

1 (yi —

1(x;i; 0o, 01))*

2

=1

Practical Statistics for Particle Physicists

2
0;

1(xi; 00, 61))°

2
0;

VVIIK 5 trne€oreir

Oct. 12-25, 2016
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ML fit or Least-square fit?

Consider we have a random variable x € [0, 3], and a
distribution f(x).

In a series of measurements, we obtained

e 9 events in [0,1), 10 events in [1,2), and 8 events in [2,3]

e We have a model of uniform f(x), and would like to estimate the
mean value of | f(x) dx for each histogram bin.

Run a thought-experiment, comparing
e maximum likelihood method, and least-square method

® Do they give the same result?
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Bayesian likelihood function

e Suppose our L-function contains two parameters 6y and 6;, where we have
some knoweldege about the prior probability on #; from previous
measurements:

7T(90, (91) — 7'('0(9())7'('1(91)
mo(6o) = const.

1 2 /o 2
m(61) = - e~ (01=0p)7/20,
V £T0p

e Putting this into the Bayes’ theorem gives the posterior probability:

p00,00) 207 11 L~ (61-6,)/20]

p(6o, 01]X) e~ Ui™
0, 01) H\/ TO; V 2moy,

® Then, p(@o ’)?) — fp(@o, (91 ‘f) d(91

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013
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with alternative priors

e Suppose we don’t have a previous measurement of #; but rather a theorist
saying that 67 should be > 0 and not too much greater than, say, 0.1 or so.

In that case, we may try modeling the prior for #; as something like

1
m1(601) = ;6_91/7, 6, >0, r=0.1

e From this we obtain (numerically) the posterior PDF for 6,

—1x=0.1
-1 =0.01

I 1-0.001

p(foly)

24 +

e This plot summarizes all knowledge about
to.

16

ﬂ PR 1 al | “ s,
12 1.25 13 135 14 1.45

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Jan. 20, 2014 57



Exercises



1. Setting limits:

(a) The parameter .S is measured to be —1.1 + 0.4. What is the Bayesian

90% CL upper limit on S given that S is physically bound within the
interval [—1,+1]?

PG| T HD

ASSumed moM P (H ( 2C> = ——
: . 5 (PRI T (H>4H
; Ga Ugsiam
‘ 7(H) = prior probability;

— e hy?
# ? why? flat over [-1, +1]

R P ——

P(X1H) =
g‘P(i"le(H)AH: |
But, what should we wse for b, 0 2
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(b) Determine the 90% CL upper limit on the signal yield 1 given a back-
ground expectation of one event (ignore systematic uncertainties) and
an observed yield of one event for a rare decay search.
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(Example) a T2K result

PRL 107, 041801 (2011)

&)

C\I/; _ —— Data
S ! < Osc. v, CC
v 4 i v,+v, CC
= I v, CC
LO j NC
\I i
Ny 3 le-
w =
a0 4
GC) £
]
o 2
O 7
s &
e | =
> W E
0 100 200 300

Invariant mass (MeV/c?)

T2K observed 6 candidate
events of vy = Ve

while a background of 1.5+03
events is expected.

e How significant is this signal?

¢ How to include the systematic
uncertainty in the analysis?

¢ \What is the relevant ‘limit’
from this result?
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(Ex) “Bayesian classifier”

3. The ratio of energy and momentum (F£/p) for a charged particle is used to
identify electrons against other particle types. Assume that it takes a value
within the interval 0.0, 1.2].

(a) Assuming that the production of all three types of charged particles are
equal, define a Bayesian classifier based on a Gaussian distributions with
1 = 1.0 for an electron, 0.38 for 7= and 0.08 for p=. For simplicity, let’s
assume all three PDFs have a width of 0 = 0.2. Classify the tracks with
the following measured values of £/p: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1.0.

(b) Repeat the above problem, but with the assumption that the expected frac-

tion of charged particles in the experiment is 80% for 7=, 10% for u= and
10% for e=*.
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(Ex) “Bayesian classifier”

3. The ratio of energy and momentum (£ /p) for a charged particle is used to
identify electrons against other particle types. Assume that it takes a value
within the interval [0.0, 1.2].

(a) Assuming that the production of all three types of charged particles are
equal, define a Bayesian classifier based on a Gaussian distributions with
1 = 1.0 for an electron, 0.38 for 7= and 0.08 for x=. For simplicity, let’s
assume all three PDFs have a width of ¢ = 0.2. Classify the tracks with
the following measured values of E/p: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and 1.0.

(b) Repeat the above problem, but with the assumption that the expected frac-
tion of charged particles in the experiment is 80% for ==, 10% for x~ and
10% for e*.

e Given some data that can be tested against a set of classifications given by
hypotheses H;,.

e For each event w; in the data set we compute P(w;|H;) for all i.

e Find ¢ where H; gives the largest value of P over all ¢’s, and we classify

the event w; as belonging to the category j.
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