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0. Introduction
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Aim of particle-cosmology:

To understand the history of the universe
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Cosmic history is determined once the followings are fixed:

• Equations for cosmic evolution

– General relativity (or some other gravity theories)

– Particle-physics models

• Initial conditions

– Baryon number density

– Dark matter density

– Density perturbations

It is better to have natural explanations for initial conditions

⇒ Of course, we need an initial condition which gives ther-
mal history consistent with observations
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Observational fact 1: Universe is (almost) homogeneous

• “Small-scale” objects exist

– Stars (r ∼ 106 km)

– Galaxies (r ∼ 10 kpc)

– Clusters (r ∼ 1− 10 Mpc)

– C.f. Horizon scale: ∼ 3000 Mpc

• For large scale, the universe is (almost) homogeneous

– ∆T/T ∼ O(10−5)
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Observational fact 2: Universe is expanding

• Red-shift of the absorption/emission lines are observed

• Einstein equation predicts expanding universe

• In the past, the universe had higher temperature and
higher density

Observational fact 3: Universe is filled with radiation

• CMB is first observed by Penzias & Wilson in 1964

• TCMB = 2.735± 0.06 K
[COBE]

• Anisotropy in the CMB is now confirmed by various ex-
periments
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Basic picture (“initial condition” of our universe):

• In the past, the universe was hotter and denser

• Universe was (almost) homogeneous from an early epoch

• There exist small density perturbations

– δρ/ρ ∼ O(10−5)

• There exist various “components” in the universe

– Radiations

– Baryons (proton, D, 4He, · · ·)

– Dark matter

– Dark energy (cosmological “constant”)
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Questions

• How was the homogeneous universe formed?

• How were the stars and galaxies formed from the homo-
geneous universe?

– What is the origin of the density perturbation?

• How were the matters generated in the early universe

– Dark matter

– Baryons

– Dark energy

• Why is the dark energy so small (but finite)?

• · · ·
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For cosmology, particle physics is very important

• High temperature ⇔ High energy

• Exotic particles may significantly affect thermal history

– Particle-physics candidate of the dark matter

– Inflation

– Baryogenesis

– · · ·

• Inflation

• Birth of the universe: Quantum gravity?
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1. Big-Bang Cosmology: Basic Issues
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We need to solve Einstein equation:

Rµν −
1

2
Rgµν = 8πGNTµν =

1

M 2
Pl

Tµν

Tµν: Energy-momentum tensor

MPl ≃ 2.4× 1018 GeV: Reduced Planck scale

Our universe is (almost) isotropic and homogeneous:

⇒ Usually, we adopt Robertson-Walker metric

Robertson-Walker metric

ds2 = dt2 − a2(t)

 dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2


a: Scale factor

r: Comoving radius (dimensionless)
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Geometry of the universe

• K > 0: Closed

• K < 0: Open

• K = 0: Flat

Observational fact: our universe is (almost) flat

⇒ Hereafter, I mostly discuss the case with K = 0
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Comment on the spacial curvature:

ds2 ≃ dt2 − a2(t)
[(
1 +Kr2 + · · ·

)
dr2 + r2dθ2 + r2 sin2 θdϕ2

]
The spacial curvature becomes important for r ∼ |K|−1/2

⇒ Radius of the curvature of the space: Rphys = |K|−1/2a

With rescaling r and a, we can take K = −1, 0, or +1

Observational fact: our universe is (almost) flat

⇒ For the length scale of our interest, Kr2 ≪ 1

⇒ Taking |K| = 1, the scale factor a is much larger than the
present horizon size (anow ≫ H−1

now)
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Spacial coordinate with RW metric: comoving coordinate

Physical distance: dlphys ∼ a(t)dr

Comoving coordinate expands with the universe
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Physical distance from the origin

lphys = a(t)
∫ dr

1−Kr2

⇒ For two objects at “rest,” physical distance changes with
time

⇒ Three-momentum red-shifts as the universe expands

Comoving momentum (for the case of K = 0): k⃗

• Comoving momentum is constant of time for free particles

• Physical momentum: k⃗phys = a−1k⃗
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Energy momentum tensor (for RW metric)

Tµν = diag(ρ, p, p, p)

ρ: Energy density

p: Pressure

p is a function of ρ

p = wρ

w: Equation-of-state parameter

w =


1/3 : radiation

0 : matter

−1 : cosmological constant
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Einstein equation for the RW metric

H2 ≡ ȧ2

a2
=

ρ

3M 2
Pl

− K

a2
≡ ρcrit

3M 2
Pl

MPl ≃ 2.4× 1018 GeV: Reduced Planck scale

ρcrit: Critical density

Energy conservation

ρ̇ = −3H(ρ+ p) = −3H(1 + w)ρ

w = p/ρ: Equation-of-state parameter

Density parameter:

Ωtot ≡
ρ

ρcrit
= 1 +

K

a2H2
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Case with the flat universe (K = 0)

H2 ≡ ȧ2

a2
=

ρ

3M 2
Pl

Equations can be analytically solved if w is constant

• a ∝ t2/3(1+w) (for w > −1)

• ρ ∝ a−3(1+w)

Notice:

H =
2

3(1 + w)
t−1
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In radiation or matter dominated universe:

• t ∼ O(H−1)

• The causal connection is possible only for the physical
distance shorter than ∼ H−1 (horizon)

At present:

• Age of the Universe: 13.8 billion years

• Present horizon scale: ∼ 1026 m ∼ 103 Mpc

1 Mpc ≃ 3.26× 106 light years ≃ 3.09× 1022 m
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Radiation-dominated (RD) universe

Radiation: relativistic object (w = 1/3)

Energy density is proportional to a−4

Decrease of the number density & red-shift

⇒ In RD, t =
1

2
H−1
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Matter-dominated (MD) universe

Matter: non-relativistic objects (w = 0)

Energy density is proportional to a−3

Decrease of the number density, but no red-shift

⇒ In MD, t =
2

3
H−1
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We have seen that:

• t ∼ O(H−1) ∼ O(
√
ρ/MPl)

⇒ In RD, t ≃ 1 sec×
(

T

1 MeV

)−2

Notice: we may consider “cosmological constant”

Tµν(C.C.) = Λgµν

⇒ ρΛ = const.

⇒ pΛ/ρΛ = −1

⇒ a ∝ eHt with H = const.
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In the universe, there are several components

• Radiation (photon, neutrinos)

⇒ ρr ∝ a−4

• Matter (baryon, CDM)

⇒ ρm ∝ a−3

• Dark energy (which looks like cosmological constant)

⇒ ρΛ ∝ a0

The dominant component changes with time
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Total energy density of the present universe
[Planck Collaboration, 1502.01589]

• Hnow = (67.8± 0.9) km/sec/Mpc ⇒ ρtot(tnow) ≃ 3.7× 10−47 GeV4

The contents of the universe: ΩX ≡ ρX(tnow)

ρtot(tnow)

Dark Energy (69%)

Cold Dark Matter (26%)

Baryon (5%)

• Ωc ≃ 0.26 (CDM)

• Ωb ≃ 0.05 (baryons)

• ΩΛ ≃ 0.69 (dark energy)

• Ωr ∼ 10−4 (radiation)
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Dominant component changes as the universe expands
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matter

dark energy

a-4

a-3

a0

• In the past, the universe was dominated by radiation

• Radiation-matter equality occurred when z ∼ 3000
(z + 1 ≡ anow/a)

26



Thermal history of the universe (part I)

T 1 + z

2.7 K 1 Present

H = 67.8 km/sec/Mpc

Ωm ≃ 0.31, ΩΛ ≃ 0.69, Ωtotal ≃ 1

1 eV 1000 Recombination (e−p→ H)

Mean free path of γ becomes ∼ ∞

10 eV 3000 Radiation-matter equality

1 MeV 1010 Big-bang nucleosynthesis (BBN)

Baryogenesis should be before this epoch

No large entropy production after BBN
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Thermal history of the universe (part II)

T 1 + z

100 GeV 1015 Electroweak phase transition

Sphaleron process becomes insignificant

??? Production of dark matter

??? Baryogenesis

· · ·

??? Inflation

· · ·

??? Birth of the universe
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2. Big-Bang Nucleosynthesis (BBN)
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In the present universe, there are various nuclei species

• Mostly H and 4He

4He mass fraction (now): Y ≡ 4n4He

nH
∼ 1

4

• Small amount of others (D, 3He, · · ·)

Primary question:

How were the nuclei synthesized?

⇒ BBN

⇒ In the star

⇒ SN
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BBN: prediction of the big-bang cosmology

• T >∼ 1 MeV: p and n do not form nuclei

• T <∼ 1 MeV: It is energetically favorable to form nuclei

BBN provides interesting test of the SM and BSM

• In the SM, there is only one free parameter

⇒ Baryon to photon ratio

• The light element abundance is sensitive to BSM physics

⇒ Exotic long-lived (but unstable) particles

⇒ Number of neutrino species (or dark radiation)

⇒ · · ·

31



Baryon-to-photon ratio: (almost) time-independent variable

η ≡
nB
nγ


T≪me

⇒ η ≃ 2.68× 10−8(Ωbh
2)

⇒ η ≃ 6.0× 10−10

[with Planck 2015 result]

At T ∼ me, photons are produced by the process e+e− → γγ

⇒ At such an epoch, nγa3 ̸= const.
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Number densities in the kinetic equilibrium

nA = gA

(
mAT

2π

)3/2
exp

(
µA −mA

T

)

mA: Mass of A

gA: Inertial degree of freedom of A

µA: Chemical potential of A

Number densities of p and n

np = 2

(
mpT

2π

)3/2
exp

(
µp −mp

T

)

nn = 2

(
mnT

2π

)3/2
exp

(
µn −mn

T

)
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If the nuclear nuclear reaction rates are fast enough

µA = AµB: chemical equilibrium

A: Atomic number

µB: Chemical potential for the baryon number

Total baryon number density

nB = np + nn + nD + n3He + n4He + · · ·

Number density in nuclear statistical equilibrium (NSE)

nA = 2−AgAA
3/2

(
2πT

mN

)3(A−1)/2 (np
T 3

)Z (nn
T 3

)A−Z

exp(BA/T )

Z: Charge

BA ≡ Zmp + (A− Z)mn −mA: Binding energy
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It is convenient to define the mass fraction

XA ≡ AnA
nB

In the NSE, the nucleus A is formed when T <∼BA
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However, expansion of the universe cannot be neglected

⇒ At some point, expansion becomes so fast that the NSE
cannot be maintained
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Rough estimate of the freeze-out temperature of neutron

• p↔ n conversion occurs via weak interaction

– n+ νe ↔ p+ e−

– n+ e+ ↔ p+ ν̄e

– n↔ p+ e− + ν̄e

• p↔ n conversion rate: Γp↔n ∼ G2
FT

5

GF ≃ 1.17× 10−5 GeV−2: Fermi constant

• Expansion rate of the universe at BBN: H ∼ T 2/MPl (RD)

Freeze-out: H ∼ Γp↔n

TF ∼ (1/G2
FMPl)

1/3 ∼ O(1 MeV)
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T >∼ 1 MeV

• NSE holds

T ∼ 1 MeV

• p↔ n conversion freezes out

⇒ p/n ratio deviates from the NSE value

• p↔ n conversion: weak interaction

L ∝ [n̄(1 + gAγ5)γµp][ν̄e(1− γ5)γµe] + h.c.

⇒ Γpe→nνe = τ−1
n (T/me)

3e−Q/T (T ≪ Q,me)
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T <∼ 1 MeV

• The p ↔ n conversion rate becomes smaller than the ex-
pansion rate of the universe

⇒ Deviation from the NSE

Xn ≃ 1/7

Xp ≃ 6/7

XD ≃ 10−12

X3He ≃ 10−23

X4He ≃ 10−28

• After this epoch, nucleosynthesis proceeds
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Nuclear reaction network

p (H)

n

D T

He3 He4

Li6 Li7

Be7

(n,   )γ

(   ,   )γ

(D, p)

α

(   ,   )γα
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T <∼ 0.3 MeV

• For T >∼ 0.1 MeV, D is easily destroyed (c.f., BD ≃ 2.22 MeV)

⇒ Nucleosynthesis does not proceed

• When T ∼ 0.1 MeV, D is effectively produced

⇒ D is transferred to 4He

D (D, n) 3He (D, p) 4He

D (D, p) 3H (D, n) 4He

D (D, γ) 4He

Nuclei heavier than 4He are hardly produced

7Li is synthesized using 4He

4He (3H, γ) 7Li
4He (3He, γ) 7Be (e−, νe)

7Li
40



T ≪ 0.1 MeV

• Nuclear interaction rates becomes smaller than the ex-
pansion rate of the universe

⇒ Abundances of the light elements are fixed

⇒ The end of BBN

Rough estimate of the 4He abundance:

• Almost all the relic neutrons are synthesized into 4He

Yp ≡
4n4He

nB
∼ 2nn

nB

∣∣∣∣∣
T=TF

∼ 0.25

• For a more accurate estimation, we need to solve Boltz-
mann equations
[Kawano code; PArthENoPE code; · · ·]

41



Evolution of the light-element abundances
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Abundances as functions of η
[Figure: Courtesy of K. Kohri]

ηCMB ≃ 6.0× 10−10
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Light elements are produced by BBN

D, 3He, 4He, (6Li, 7Li)

Heavier elements are produced afterwords

• Nuclear reaction in stars

• Supernova (r-process)

In order to test the scenario of BBN, we should compare
theoretical predictions with observations

• Light elements are also produced/destroyed in stars

We should find old environment

• High redshift

• Metal-poor
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Deuterium

• D/H is inferred from D absorption in damped Lyα systems
(DLAs)

QSOCloudObserver (us)

E
(n)
H ≃ − α2

2n2

 1

me
+

1

mp

−1

vs. E
(n)
D ≃ − α2

2n2

(
1

me
+

1

mD

)−1

⇒ E
(n)
H − E

(n)
D

E
(n)
H

∼ −2.7× 10−4 ⇒ δv ∼ 80 km/sec
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Observation of DLA toward QSO SDSS J1358+6522
[Cooke et al., Astrophys.J. 781 (2014) 31]
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Primordial abundance of D

⇒ D/H = (2.53± 0.04)× 10−5

[Cooke et al., Astrophys.J. 781 (2014) 31]
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Helium-4

• 4He abundance is inferred from observation of emission
lines from extra galactic HII regions
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Final Dataset

d(Y)/d(O/H) = 79 +/- 43

 

 

Y

O/H x 105

Yp

YBBN = 0.2449± 0.0040
[Aver, Olive & Skillman, JCAP 1507 (2015) 011]
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Lithium-7

• 7Li has been observed in Pop-II old halo stars

[Li] = Log     (  Li / H ) + 127
10

[Bonifacio and Malaro, MNRAS 285 (1997) 847]

• In stars with high surface temperature, 7Li abundance was
though to be almost constant (Spike plateau)
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Currently, the situation is more controversial about 7Li

• (7Li/H) is not constant in stars with very low metallicity

Asplund et al. (’06)

Aoki et al. (’09)

Gonzarez Hernandez et al. (’08)

Sbordone et al. (’10)

[Sbordone et al., Astron.Astrophys. 522 (2010) A26]

[Fe/H] ≡ log10
(Fe/H)

(Fe/H)⊙

• We do not use 7Li to test BBN
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Theory vs. Observations: Reasonable agreements
[Figure: Courtesy of K. Kohri]
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Predictions of the standard BBN (more or less) agree with
observations

⇒ Any new physics which significantly affects the BBN is
disfavored / excluded

• Extra energy density at the neutron freeze-out

• Late-time emissions of high energy particles

• · · ·

BBN constrains physics beyond the standard model

• Weakly interacting light particles

• Supersymmetry

• · · ·
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If high energy photons / hadrons are emitted after BBN, they
dissociate light elements

⇒ They may change the prediction of the standard BBN

If we consider physics beyond the standard model, it may
contain particle with very long lifetime

• Gravitino (superpartner of the graviton)

• Moduli fields in string theory

• · · ·

53



What happens?

Energetic

Hadrons

Decay Hadronic Shower Electromagnetic Shower

Photon / Charged leptonsPartons (quarks, gluon)

Photo-DissociationHadro-Dissociation

Mesons p, n

Decay of exotic particle

Energy-loss

Energy-loss

Hadronization

Hadronic Radiative

p        n Interconversion

 He Destruction4

 D,   He,   Li,   Li  Production3 6 7

 D,   He,   Li,   Li  Destruction3 6 7
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As an application, we may obtain upper bound on the reheat-
ing temperature in supergravity models

• In supergravity, gravitino exists

– Its interaction is suppressed by 1/MPl

– Long lifetime:
τ ≃ 108 sec× (m3/2/100 GeV)−3

– Its relic abundance is proportional to TR:
Y3/2 ≃ 2× 10−11 × (TR/10

10 GeV)

– Possible decay mode:
ψµ → γ + χ0, hadrons, · · ·

⇒ Too much gravitino spoils the success of BBN
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Upper bound on the abundance of a long-lived particle X

[Kawasaki, Kohri & Moroi (’05)]

YX ≡ nX
s

s =
2π2

45
g∗T

3
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3. Inflation
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Unsolvable problems in standard cosmology:

• Why is the Universe so homogeneous and flat at large-
scale?

• What is the origin of the small-scale inhomogeneity?

• Why is the curvature term so small?

• Where did unwanted relics go?

Inflation solves these problems by one fine-tuning

Inflation does not explain the smallness of the cosmolog-
ical constant

Fine-tuning of the cosmological constant is needed for
viable scenarios of inflation
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Here, I discuss

• Motivations of inflation

– Horizon problem

– Flatness problem

– Unwanted relics

• Slow roll inflation

– Basic features

– Several Models (chaotic inflation, new inflation)

• Density perturbation
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Horizon problem

Why is our universe so homogeneous and smooth?

In RD / MD epoch, particle travels at most ∼ H−1

• For r ≫ H−1, no causal contact is expected

⇒ Inhomogeneity is possible within the horizon

In the RD / MD epoch, the Hubble horizon expands faster
than the the comoving distance

• Physical distance ∝ a

• Hubble horizon ∝ H−1

H−1 ∝ a3(1+w)/2 ⇒ d

dt
(aH) < 0 for RD/MD
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Present horizon consists of many regions which were causally
disconnected

⇔ In the past, horizon size was smaller than the present one

horizon scale
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Homogeneity of the CMB (∆T/T ∼ O(10−5))

• The CMB is from the last-scattering surface

• Entropy within the horizon scale

– SH(z = 0) ∼ 1088

– SH(z ∼ 1000) ∼ 1083

⇒ Present horizon contains about 105 causally disconnected
regions at the recombination

⇒ This scale corresponds to the angular scale of about 0.8
degree on the present sky

What is the reason for the homogeneity of the present uni-
verse?
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Flatness problem

Our universe is (almost) flat, but why?

Robertson-Walker metric

ds2 = dt2 − a2(t)

 dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2


FRW equation:

H2 =
ȧ2

a2
=

ρ

3M2
Pl

− K

a2
where ρ ∝

a
−3: MD

a−4: RD

The curvature term becomes important when K−1/2a ∼ H−1

⇔ Radius of the curvature of the space: Rphys = K−1/2a
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Evolution of each components
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“curvature”

⇒ As time goes, the curvature term dominates over the en-
ergy density of radiation and matter
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Tuning required for the curvature term:

• ΩK = 0.0008+0.0040
−0.0039

⇒ K−1/2a(tnow)
>∼O(10)×H−1(tnow)

• At the time of recombination (for example)

⇒ K−1/2a(trec)
>∼O(103)×H−1(trec)

• In the very early epoch (birth of the universe)

⇒ K−1/2a(tearly) ≫ H−1(tearly)

Why is the curvature term so suppressed compared to the
expansion rate?
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Unwanted relics

In many models, there exist various unwanted relics

• Monopole from GUT

• Gravitino in supergravity models

• Topological defects from PQ (and other) symmetry

• · · ·

These objects are produced when universe was very hot

• If they are stable, they may overclose the universe

• If they decay after BBN, they dissociate light elements
and spoil the success of BBN

⇒ Somehow, we need to dilute them
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If the universe once experienced a de Sitter phase, these prob-
lems may be solved

Tµν ≃ ρvgµν with ρv ≃ const. ⇒ ȧ

a
=

√
ρv√

3MPl

≡ Hinf

The universe expands rapidly

ȧ/a = Hinf ⇒ a = a0e
Hinft ⇒ d

dt
(aH) > 0

With the exponential growth of the scale factor:

⇒ Horizon problem may be solved

⇒ Spacial curvature as well as energy densities of radiation
and matter become (almost) zero
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Causally connected region becomes larger than the horizon
scale

horizon scale

As time goes, causally connected region goes out of the hori-
zon during inflation
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Meaning of the Hubble horizon during inflation

• At t = 0, a photon is emitted from A to B

⇒ ds2 = dt2 − a(t)2dx2 = 0

⇒ Comoving coordinate at time t:

xγ(t) =
∫
dx =

∫ t

0

dt

a(t)
=

1

Hinf
(1− e−Hinft)

• xγ → H−1
inf as t→ ∞

• If the distance between A and B is longer than H−1
inf at

t = 0, the photon cannot arrive the point B
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Evolution of the physical scale and horizon scale

Scale

Inflation RD

Scale factor a

Horizon

Physical Wavelength

MD

⇒ Mode with longer wavelength exits the horizon at earlier
epoch during inflation
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Schematic picture of the evolution of horizon

Hinf
-1

NeHinf
-1 e

Present horizon

Inflationary Universe Hot Big-Bang Universe
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For inflation, (effective) cosmological constant should be pro-
vided in some form

• Energy density of the scalar field (inflaton)

• Energy density of inflaton should be finally converted to
that of radiation (reheating)

There are various models of inflation

• The “vacuum energy” is provided as a potential energy
of a scalar field

• The inflaton decays after inflation, and reheat the universe
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Energy momentum tensor of scalar field χ

L =
1

2
(∂µχ)

2 − V (χ) ⇒ Tµν = ∂µχ∂νχ− gµνL

Assumption: χ = χ(t)

ρχ = T00 =
1

2
χ̇2 + V

pχ = Tii =
1

2
χ̇2 − V

Vacuum energy: p/ρ = −1

⇒ Condition for successful inflation: χ̇2 ≪ V
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Original idea of inflation: Inflation with false vacuum
[Guth; Sato]

V

χ

inf

inf

Guth and Weinberg pointed out that, in this case, the rate
of the 1st-order phase transition is too slow

⇒ Inflation does not end
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Slow-roll inflation

• Inflation occurs when inflaton field is “slow-rolling”

• Inflaton potential has a very flat “slow-roll” region

χ̈+ 3Hχ̇+ V ′ = 0

V

χ

inf

inf

Slow roll Oscillation

χ̇ should not change rapidly

⇒ Slow-roll condition: H−1χ̈≪ χ̇
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Conditions for slow-roll inflation

χ̇2
inf ≪ Vinf (potential energy dominance)

χ̈inf ≪ 3Hχ̇inf (slow-roll condition)

Equation of motion of inflaton: χ̈inf + 3Hχ̇inf + V ′
inf = 0

⇒ χ̇inf ≃ − V ′
inf

3Hinf
with H2

inf ≃
Vinf
3M 2

Pl

Condition for the potential energy dominance

With the slow-roll condition: 3Hχ̇inf + V ′
inf ≃ 0

ϵ ≡ 1

2
M2

Pl

V ′
inf

Vinf

2 ≃ 3

2

χ̇2
inf

Vinf
≪ 1
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Slow-roll condition: χ̈inf ≪ Hχ̇inf

Derivative of 3Hχ̇inf + V ′
inf ≃ 0 with respect to time

3Hχ̈inf + 3Ḣχ̇inf + V ′′
infχ̇inf ≃ 0

Then, divide by 3H2χ̇inf

χ̈inf

Hχ̇inf
+
Ḣ

H2
+
V ′′
inf

3H2
≃ 0

Using the relations Ḣ ≃ −ϵH2 and 3H2M2
Pl ≃ Vinf

η ≡M 2
Pl

V ′′
inf

Vinf
≃ ϵ− χ̈2

inf

Hinfχ̇inf
≪ 1
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The scenario of slow-roll inflation

1. Slow-roll epoch (inflation)

• Energy density of the universe is dominated by potential
energy of inflaton

• Background is almost de Sitter

2. Oscillating epoch

• Inflaton field oscillates around the vacuum

3. Reheating

• Inflaton field decays

• Energy density of inflaton is converted to that of radia-
tion, and radiation-dominated universe is realized
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Evolution of energy densities
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RDInflation Oscillation

Reheating

Radiation

Inflaton

Dilute Plasma

In the de Sitter phase, the universe expands rapidly

⇒ Unwanted relics are diluted at the reheating
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The de Sitter phase should continue long enough to solve the
horizon problem

⇒ How long should inflation continue?

We usually use “e-folding number”

Ne(t) = ln
aend
a(t)

=
∫ tend

t
Hdt

aend: scale factor at the end of inflation

Total e-foldings:

N (tot)
e = ln

aend
astart
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Size of the causally connected region after inflation: H−1
inf e

Ne

⇒ Physical length corresponding to the present horizon scale
should be smaller than H−1

inf e
Ne

Hinf
-1

NeHinf
-1 e

Present horizon

Inflationary Universe Hot Big-Bang Universe
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Entropy in the causally connected region at T ∼ TR

• Assume instantaneous reheating (for simplicity)

T 4
R ∼ ρinf ∼M 2

PlH
2
inf

• Total entropy in the causally connected region

SC ∼ T 3
R(H

−1
inf e

Ne)3 ∼
(
MPl

Hinf

)3
e3Ne

In order to solve the horizon problem

SC
>∼ Snow

• Snow ∼ 1088: Entropy within the current horizon

• Adiabatic expansion of the universe is assumed
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Lower bound on the e-foldings:

Ne>∼ 60 +
1

2
ln

Hinf

1013 GeV

If we take account of the oscillation epoch after inflation

Ne>∼ 60 +
1

3
ln

Hinf

1013 GeV
+

1

3
ln

TR
1016 GeV

Our horizon scale exits the horizon when Ne ∼ 25− 60

⇒ Universe expands significantly during inflation
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The reheating temperature is related to the decay rate of
inflaton field

• Before the reheating, the energy density of the universe
is dominated by the (oscillating) inflaton

⇒ ρχinf
∝ a−3

• At H ∼ Γinf, inflaton decays (reheating)

Reheating temperature

Γinf ∼ H|T=TR
∼
√√√√ ρχ
M 2

Pl

∼ T 2
R

MPl
⇒ TR ∼

√
MPlΓinf

Notice that TR is model-dependent
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The reheating temperature should be low enough to dilute
unwanted relics

⇒ Constraints on inflation model

Monopole

• TR<∼MGUT

• In SUSY GUT, TR<∼ 1016 GeV

Gravitino (superpartner of graviton)

• Severe upper bound on TR

These problems can be solved by assuming late-time entropy
production
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Gravitino problem
[Weinberg (1982)]

• In supersymmetric model, there exists superpartner of the
graviton, called gravitino

• Interaction of gravitino is very weak

• Gravitinos are produced in the early universe

• Gravitinos decay during the BBN epoch because its life-
time is extremely long
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Interaction of gravitino

• Gravitino couples to supercurrent

• Interaction of graivitino is Planck suppressed

ψ
µ

ψ
µ

q

q
~

g

g
~

Gravitino is produced by the scatterings of MSSM particles

• g + g → ψµ + g̃, · · ·

Gravitino has very long lifetime (if unstable)

τ3/2(ψµ → g + g̃) ≃ 50 sec×
(
m3/2

10 TeV

)−3
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Gravitino production after the inflation

• Gravitino production rate

⟨σprodvrel⟩ ∼
αgauge

M 2
Pl

⇒ Γprod ∼ ⟨σprodvrel⟩T 3

• Yield variable (s: entropy density)

Y3/2 ≡
n3/2
s

∼ ΓprodH
−1 → αgaugeTR

MPl

⇒ (Gravitino abundance) ∝ (reheating temperature TR)

Result of the detailed calculation
[with ⟨σprodvrel⟩ by Bolz, Brandenburg & Buchmuller]

n3/2
s

≃ 1.9× 10−12 ×
(

TR
1010 GeV

)
with TR ≡

(
10

g∗π2
M 2

PlΓ
2
Φ

)1/4
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In order not to spoil the success of the BBN, TR is bounded
from above

[Kawasaki, Kohri, TM, Yotsuyanagi (2008)]
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Chaotic inflation
[Linde]

Inflation may occur even with parabolic (or polynomial) po-
tential

Vinf =
1

2
m2

χχ
2
inf

Vinf becomes larger than kinetic energy if χinf ≫MPl

⇒ Chaotic inflation (more to be discussed later)

As time goes on, χinf becomes smaller than MPl

⇒ Slow-roll condition is not satisfied any longer

⇒ Inflation ends
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Chaotic inflation with parabolic potential

Vinf =
1

2
m2

infχ
2
inf ⇒ ϵ = η =

2M 2
Pl

χ2
inf

Slow-roll condition is satisfied when χinf ≫MPl

⇒ Can we use the field theory beyond the Planck scale?

From the observations of the cosmic density fluctuations, minf

is determined

minf ∼ 1013 GeV

Reheating with Planck-suppressed interaction

Γinf ∼
m3

inf

M 2
Pl

⇒ TR ∼ 1010 GeV ×
[

minf

1013 GeV

]3/2
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New inflation

Inflaton starts from a “top of a hill”

V

χ

inf

inf

One might ask: Why such an initial condition?

⇒ Maybe, thermal effect (or ???)

⇒ Otherwise, one may go to the “chaotic” scenario
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During inflation, scalar fields (and also metric) fluctuate

⇒ Origin of the density fluctuation of the universe

Equations of motion of a scalar field ϕ during inflation

ϕ̈+ 3Hinfϕ̇+
k2

a2
ϕ+m2

ϕϕ = 0

With ν2 = 9/4−m2
ϕ/H

2
inf and dτ = adt

ϕ(τ, x⃗)=

√
−πτ
2a

∫ d3k

(2π)3/2

×
[
akH

(1)
ν (−kτ)eik⃗x⃗ + a†kH

(2)
ν (−kτ)e−ik⃗x⃗

]

H(1)
ν (−kτ) ∝ e−ikτ for k → ∞
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Quantization

We identify ak as annihilation operator: ak|0⟩in = 0

Two point function

⟨0|δϕ(t, x⃗)δϕ(t, y⃗)|0⟩ = 1

4π

∫
d log kdΩk|δϕ(k)|2eik⃗(x⃗−y⃗)

⇒ For the long-wavelength limit

δϕ(k) =

(
kphys
2Hinf

)2m2
ϕ/3H

2
inf Hinf

2π

• When mϕ ≪ Hinf, δϕ(k) ≃ Hinf/2π

• When mϕ
>∼Hinf, δϕ(k) ≃ 0
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Different region has different e-folding at the end of inflation
(if we go back to the coordinate space)

δχ

V

χ

inf

inf

inf

δNe(k) = Hinfδt(k) = Hinf
δχinf

χ̇inf
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δNe(k) becomes the origin of cosmic density fluctuations

⇒ Fluctuation of CMB

⇒ Density fluctuations (galaxies, clusters)

Fluctuation is often parametrized by curvature perturbation

R(k) = Hinf
δχinf

χ̇inf
=

Hinf

2π

3H2
inf

V ′


k=aH

• Curvature perturbation for the wavelength k−1 is evaluated
when such scale exits the horizon during inflation

• R(k) determines the size and the scale-dependence of den-
sity fluctuations
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During the slow-roll inflation, H and V ′ changes

⇒ Scale dependence of R

Scale dependence is often approximated as

⟨R2(k)⟩ ≃ ⟨R2(k0)⟩
(
k

k0

)nS−1

Notice: observables are second (or higher) order in R

nS is called (scalar) spectral index

• nS is usually approximated by a constant

• nS is close to 1 in most of inflation models
(Scale invariant density fluctuation)
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Estimation of the spectral index: when nS ∼ 1

⟨R2(k)⟩ ≃ ⟨R2(k0)⟩
[
1 + (nS − 1) ln

k

k0
+ · · ·

]

Expansion of ⟨R2(k)⟩

⟨R2(k)⟩ = ⟨R2(k0)⟩
1 + 1

R2(k0)

d⟨R2(k)⟩
d ln k

ln
k

k0
+ · · ·



= ⟨R2(k0)⟩
1 + dχinf(k)

d ln k

d ln⟨R2(k)⟩
dχinf(k)

ln
k

k0
+ · · ·



χinf(k): amplitude when the mode k exits the horizon

Spectral index is obtained by comparing above two relations
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Derivative of χinf(k) with respect to k?

⇒ We have to know the inflaton amplitude when the mode
k exits the horizon

Scale

time

a / k

H inf
-1

a / ( k +    k )∆

t∆

χ

Vinf

inf∆χinf
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From the figure, we can see

H−1
inf =

a(t)

k
=
a(t+∆t)

k +∆k
⇒ ∆k

k
=
ȧ

a
∆t ⇒ ∆ ln k = H∆t

In addition

∆t =
∆χinf

χ̇inf
⇒ dχinf

d ln k
=
χ̇inf

Hinf
≃ −M 2

Pl

V ′
inf

Vinf

Derivative of ⟨R2⟩ with respect to χinf

d ln⟨R2⟩
dχinf

=
d ln(V 3

inf/V
′2
inf)

dχinf
=

3V ′
inf

Vinf
− 2V ′′

inf

V ′
inf
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Spectral index

nS − 1 =
dχinf

d ln k

d ln⟨R2⟩
dχinf

= −M 2
Pl

V ′
inf

Vinf

3V ′
inf

Vinf
− 2V ′′

inf

V ′
inf



nS can be expressed with the slow-roll parameters

nS − 1 = −6ϵ+ 2η

During inflation, ϵ and η are small

⇒ Density fluctuation from the slow-roll inflation has weak
scale-dependence

• ϵ: change of Hinf

• η: change of V ′
inf
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We learn a lot about R(k) from CMB fluctuations

Planck Collaboration [http://www.cosmos.esa.int/web/planck]
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CMB angular power spectrum

∆T (x⃗, γ⃗) =
∑
l,m

al,m(x⃗)Yl,m(γ⃗) ⇒ Cl =
1

2l + 1

∑
m
|al,m|2

Notice:

• Cl is second order in the fluctuation

• Cl ∼ (∆T )2 for the angular scale θ ∼ π/l

Sometimes, we also use

Dl ≡
l(l + 1)

2π
Cl
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Result of Planck 2015
[Planck Collaboration, 1502.01589]

Dl ≡
l(l + 1)

2π
Cl
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⇒ Very good agreement with the prediction of inflation (with
a proper choice of cosmological parameters)
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CMB angular power spectrum contains rich information

• Density perturbations

• Dark radiation, dark matter, baryon, and CDM densities

• Other cosmological parameters

Amplitude of the scalar perturbation
[Planck Collaboration, 1502.01589]

AS = ⟨R2(k = 0.05 Mpc−1)⟩ = (2.142± 0.049)× 10−9
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Prediction of inflation: scale-invariant density fluctuation

⇔ Cl is sensitive to nS
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Observed value of the scalar spectral index:

nS = 0.9645± 0.0049
[Planck (2015)]

⇔ nS = 0.961± 0.017
[WMAP (2006)]

There are strong (but circumstantial) evidences of inflation

• Flat geometry

• Almost scale-invariant (and adiabatic) density fluctuation
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Tensor perturbation

During inflation, the metric (i.e., graviton) also fluctuates

Physical d.o.f.: transverse & traceless mode

gij = −a2(δij + hij) with


∂ihij = 0

hii = 0

For hij ∝ eikz, for example:

hij = −a2


1 + h+ h× 0

h× 1− h+ 0

0 0 1
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Transverse & traceless mode in de Sitter space:

S =
∫
d4x

√
−g

[
1

2
M 2

PlR− Λ

]

=
∫
d4xa3

∑
α

[
1

2
(∂th̃α)

2 − 1

2
a−2(∂ih̃α)

2
]
+ · · ·

h̃α =
1√
2
MPlhα

h̃α behaves like canonically normalized massless scalar field

⟨h̃2α⟩ =
M 2

Pl

2
⟨h2α⟩ =

(
H

2π

)2
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Tensor-to-scalar ratio:

r ≡ 4⟨h̃2α⟩
⟨R2⟩

In slow-roll inflation, r is related to the slow-roll parameter:

r = 16ϵ

ϵ ≡ 1

2
M 2

Pl

V ′

V

2

The tensor fluctuation affects

• CMB temperature fluctuations

• CMB polarization (in particular, B-mode)
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Information about r is imprinted in CMB polarizations

E-mode (Parity even)

B-mode (Parity odd)

• E-mode can be generated from temperature (scalar) per-
turbations

• B-mode provides important test of inflation
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CMB polarization from temperature fluctuations

[W. Hu]

⇒ Temperature quadrupole anisotropy causes polarization of
CMB
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WMAP and Planck results

[WMAP 3 years] [Planck 2015]

Currently:

• E-mode signal has been already observed

• B-mode signal has not been observed yet
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Current constraints on the inflation models
[Planck Collaboration, 1502.02114]
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4. Dark Matter
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Our universe is mostly “dark”

• Dark energy (cosmological constant?)

• Dark matter

Properties of dark matter

• Very weakly interacting

• Pressure is (almost) zero (like non-relativistic particles)

Nobody knows what is playing the role of dark matter in the
present universe
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Evidence 1: Rotation curve

r

M (r)

v

Centrifugal force

Gravitational force

Stars (and gases) are rotating around the center of galaxy

v(r) ≃
√√√√GM(r)

r

M(r): Total mass within the radius r
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We can estimate v(r): usually 21cm spectral line is used

[Begeman, Broeils & Sanders, MNRAS 249 (1991) 523]

Visible objects are not enough to explain the rotation curve

⇒ Dark matter
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Evidence 2: Gravitational lensing

[NASA / ESA]

• Visible objects are not enough to explain the lensing

⇒ Dark matter
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Evidence 3: Bullet clusters

[HST homepage]

⇒ See also the movie

• Pink: Intense X-ray emission observed

⇒ Baryon

• Blue: Significant effect of gravitational lensing observed

⇒ Dark matter
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Evidence 4: Structure formation

[The Center for Cosmological Physics (U. Chicago)]

⇒ Without dark matter, current structure of the universe
could not be formed
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Dark matter: (almost) no pressure (i.e., w = 0)

[Gao & Theuns, Science 317 (2007) 1527]

Left: CDM

Right: WDM (mass = 3 keV)

⇒ Dark-matter pressure should be negligible when T ∼ 1 keV
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Requirements for dark matter

• Weakly interacting

⇒ Charge-neutral, color singlet, · · ·

• Stable (or long-lived)

⇒ τDM ≫ 1010 years

• p/ρ ≃ 0 (when T ∼ 1 keV)

⇒ For “particle” dark matter, mDM
>∼ 1 keV

• ΩDM ≃ 0.26
[Planck15]

Open question:

What is dark matter (from particle-physics point of view)?
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Primordial black holes (PBHs) as DM

M(Galaxy) ∼ 1012M⊙
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[Carr, Kuhnel & Sandstad, 1607.06077]
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F
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K

ML

WMAP, FIRAS

: Hawking radiation

: Femtolensing of gamma-ray bursts

: Neutron star  capture

: Kepler microlensing and millilensing

: MACHO/EROS/OGLE microlensing

: WMAP & FIRAS: Accretion effects

• PBH DM looks difficult, if the spectrum is monochromatic

• Origin of PBHs is unknown
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An elementary particle as DM

⇒ No candidate of CDM in the particle content of the SM

⇒ Need physics beyond the SM
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Physics beyond the SM is necessary for DM

⇒ There are many candidates

Particle dark matter

• Lightest syperparticle (LSP) in SUSY

• Lightest Kaluza-Klein particle in UED model

• · · ·

Coherent oscillation of scalar field

• Axion in models with Peccei-Quinn symmetry

• · · ·
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WIMP dark matter

WIMP = Weakly Interacting Massive Particle

Standard approach

1. Introduce dark-matter candidate X

2. Assume some symmetry to stabilize X

• R-parity in SUSY models

• KK-parity in UED models

• · · ·

Production mechanism of X depends on scenario

• Thermal, if the interaction of X is non-negligible

• Non-thermal, if the interaction of X is super-weak
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An example: Minimal SUSY standard model with R parity

R = + R = −
Gauge Multiplets g, W , B g̃, W̃ , B̃

Quark Multiplets Q Q̃

Lepton Multiplets L L̃

Higgs Multiplets Hu, Hd H̃u, H̃d

L = Lkin −
1

2
B̃B̃ − 1

2
W̃W̃ − 1

2
g̃g̃ − µH̃uH̃d −m2

Q̃Q̃
∗Q̃

−i
√
2g1YQB̃QQ̃

∗ + · · ·

L /∋ λℓ̃LℓLe
c
R + λ′ℓ̃LqLd

c
R + λ′′ũcRd

c
Rd

c
R + · · ·

⇒ The lightest superparticle (LSP) is stable
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Popular Scenario: Thermal relic WIMP as dark matter

1. X is in chemical equilibrium when T ≫ mX

2. X freezes out from thermal bath when T ≪ mX

⇒ nX ∝ a−3

X should interact with SM particles for thermalization

• X +X ↔ SM particles

• Important quantity: pair-annihilation cross section ⟨σvrel⟩

⇒ (Scattering rate) = (Mean free time)−1 = nX⟨σvrel⟩

⇒ ⟨σvrel⟩ is model-dependent
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Dark matter in the early universe

• When T >∼ TF, DM is in thermal bath

• When T ∼ TF, DM freezes out

• When T <∼ TF, nDMa3 ∼ const.
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Boltzmann equation:

dnX
dt

= −3HnX − ⟨σvrel⟩(n2X − ⟨nX⟩2T )

⟨nX⟩T : number density in chemical equilibrium

⇒ nX = gX

(
mXT

2π

)3/2
e−mX/T (for T ≪ mX)

• First term: cosmic expansion

• Second term: pair annihilation and its inverse process

131



High temperature: H ≪ nX⟨σvrel⟩

ṅX ≃ −⟨σvrel⟩(n2X − ⟨nX⟩2T ) ⇒ nX ≃ ⟨nX⟩T

⇒ X is in chemical equilibrium

⇒ nX ∝ e−mX/T for T <∼mX

Low temperature: H ≫ nX⟨σvrel⟩

ṅX ≃ −3HnX ⇒ nX ∝ a−3

⇒ X freezes out from thermal bath

⇒ The number of X in comoving volume is conserved
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Freeze-out temperature: H(TF ) ∼ ⟨nX⟩TF
⟨σvrel⟩

nX(TF ) ∼
H(TF )

⟨σvrel⟩

∣∣∣∣∣∣
T=TF

Dark matter density is inversely proportional to ⟨σvrel⟩

Time

Small <    v >

Chemical eq.

n       / nγWIMP

~1

T ~ mWIMP

Freeze-out

σ

Large <    v >σ
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It is convenient to use:

sa3 = const. (if there is no entropy production)

s =
2π2

45
g∗S(T )T

3: entropy density

Thermal relic density of dark-matter particle

ρX
s

∣∣∣∣∣
now

∼ mXnX
s

∣∣∣∣∣
T=TF

∼ mX

⟨σvrel⟩TMPl

∣∣∣∣∣∣
T=TF

⇒ Ω
(thermal)
WIMP ≃ 0.2×

⟨σvrel⟩
1 pb

−1

Notice: 1 pb ∼ 4πα2

(500 GeV)2
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Other classes of scenarios are also possible

• DM may be somehow produced in the early universe (like
gravitino in SUSY model)

• DM may originate from the decay of “parent” particle

ΩDM =
mDM

mparent
Ω

(would-be)
parent

Time

n  / nγX

~?

T ~ τparent

Parent particle

DM particle

In non-thermal scenarios, ⟨σvrel⟩ ≃ 1 pb is not necessary
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How to detect dark matter particle?

• Direct detection

• Indirect detection (with cosmic rays)

• Collider experiments

SM particle

SM particleDM

DM

Collider

Direct detection

Thermal abundance / Indirect detection

?
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Direct detection

• There are DMs around us

• We look for scattering of DM and target materials

DM DM

Target material (Xe, NaI, ...)

Recoil energy

Scntillation light

Ionization

Phonon
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DM in our galaxy

• DM velocity

v ∼ 10−3c

• Typical recoil energy

Erecoil ∼
m2

DMmN

(mDM +mN)2
v2 ∼ O(10 keV)

Event rate

R ∼ 10−4 kg−1day−1 ×
(

σχN
10−40 cm2

) (
mDM

100 GeV

)−1 ( mN

1 GeV

)−1

σχN : WIMP scattering cross section
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Example: LUX (@ deep underground in SD, U.S.)

• Scintillation photons (S1)

• Ionization electrons (S2)
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Recent results from liquid Xe experiments

• PandaX: 3.3× 104 kg-day

• LUX: 370 kg × 332 live day ≃ 1.2× 105 kg-day
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This work (Run8+Run9)

This work (Run8+Run9), tuned NEST

PandaX-II Commissioning (Run8)

XENON100, 2012 

LUX 2015

NUHM2

pMSSM10

[PandaX, PRL 117 (2016) 121303] [M. Szydagis, talk given at ICHEP2016]
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Future prospect

⇒ Eventually, we should worry about neutrino backgrounds

141



Indirect detection

• We can look for a signal of DM annihilation in the present
universe

Earth

γ-ray

Region with high DM density
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Interesting environment: dwarf spheroidal galaxies (dSph)

• Low luminosity galaxies accompanying the Milky Way

• Stars in dSph are expected to be trapped by the gravita-
tional field by dark matter

[ESO’s HP, http://www.eso.org/public/images/eso1007a/][R. Powers’s HP, http://www.atlasoftheuniverse.com]
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FERMI γ-ray space telescope:

• Satellite experiment to observe high energy cosmic-ray γ

• Fermi satellite observed 15 dSphs from 2008 to 2014

Non-observation of high energy γ from dSphs

⇒ Upper bound on DM annihilation cross section

γ-ray flux from the DM annihilation

dΦ

dEγ
=

⟨σv⟩
8πm2

DM

∑
f

bf
dNγ

dEγ
× J

J-factor (astrophysical factor)

J =
∫
∆Ω

dΩ
∫
l.o.s.

dlρ2DM(l)
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Bound on the annihilation cross sections
[MAGIC + Fermi-LAT, 1601.06590]
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Notice:

• Uncertainties in the J-factor may be underestimated
[Bhattacherjee et al., 1405.4914; Ichikawa et al., 1608.01749]
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Case of neutral-Wino DM (in SUSY model): W̃ 0W̃ 0 → W+W−

• Wino is a well-motivated candidate of DM in some class
of scenarios, like anomaly mediation

• Annihilation cross section of Wino is relatively large
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Wino annihilation
[Bhattacherjee et al.]

Based on MAGIC + Fermi-LAT:

• 780 GeV<∼mW̃
<∼ 1.7 TeV, or

• mW̃
>∼ 2.7 TeV
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DM at Colliders

• DM can be produced at pp, e+e−, and other colliders, if
the DM particles interacts with SM particles

• Because DM is “invisible,” extra hadronic or leptonic ac-
tivities are necessary to see the signal of DM production

• Events are (usually) characterized by sizable missing pT
(at the LHC) or missing momentum (at e+e− colliders)

SM particles

ProtonProton

DM
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Example: SUSY search at the LHC

• Primary process: pair productions of gluino or squarks

• ATLAS and CMS look for signals with high pT jets and
sizable missing momentum

LSP (invisible)

Final-state particles

Gluino
Gluino

ProtonProton

JetsLeptons LSP (invisible)

148



Recent result of Gluino search (ICHEP 2016)

 [GeV]
g~

m

400 600 800 1000 1200 1400 1600 1800 2000

 [
G

e
V

]
0 1
χ∼

m

200

400

600

800

1000

1200

1400

0
1χ∼

 <
 m

g~m

))/2
0

1
χ
∼) + m(g

~
)=(m(
±

1
χ
∼)=100%, m(

0

1
χ
∼± qq W→

±

1
χ
∼ qq →g

~
(B production, g

~
g
~

ATLAS Preliminary
-1 = 13 TeV, 13.3 fbs

0-leptons, 2-6 jets

All limits at 95% CL.

Meff Regions

)
SUSY

theory
σ1±Obs. limit (

)expσ1±Exp. limits (

, 8 TeV)-1Observed limit (20.3 fb

, 2015)-1Obs. limit (3.2 fb

 [GeV]g~m

800 1000 1200 1400 1600 1800 2000
 [
G

e
V

]
10
χ∼

m
0

200

400

600

800

1000

1200

1400 CMS Preliminary

1
0χ∼q q→g~,g~g~→pp ICHEP 2016

 (13 TeV)-112.9 fb

Expected

Observed

)
miss
TSUS-16-014 (H

)T2SUS-16-015 (M

149



Recent result of squark search (ICHEP 2016)
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LHC constraints on other “models” are also available

⇒ Please check ATLAS and CMS publications

You can find simplified models in 1507.00966

• List of simple Lagrangians for DM candidates are given,
assuming Z2 symmetry

• The model may contain new mediators

– Scalar

– Vector

– Fermion
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Another DM candidate: oscillating scalar field ϕ

• Let us assume there exists a massive scalar field

S =
∫
d4x

√
−g

[
1

2
gµν∂µϕ∂νϕ− 1

2
m2

ϕϕ
2
]

• We assume that the interaction of ϕ is very weak

⇒ We neglect the interaction terms

• Energy-momentum tensor

Tµν = ∂µϕ∂νϕ− gµνL
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How does the scalar field play the role of DM?

• Let’s consider the homogeneous mode: ϕ = ϕ(t)

• Equation of motion:

ϕ̈+ 3Hϕ̇+m2
ϕϕ = 0 where H ≡ ȧ

a

• Energy density and pressure:

ρϕ = T00 =
1

2
ϕ̇2 +

1

2
m2

ϕϕ
2, pϕ = Tii =

1

2
ϕ̇2 − 1

2
m2

ϕϕ
2

• When H ≪ mϕ, the scalar field rapidly oscillates

⟨ϕ̇2⟩ ≃ m2
ϕ⟨ϕ2⟩ ⇒ ⟨pϕ⟩ ≃ 0 ⇒ wϕ ≃ 0
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Evolution of the energy density (for H ≪ mϕ)

• Equation of motion: ϕ̈+ 3Hϕ̇+m2
ϕϕ = 0

⇒ ϕ̇ϕ̈+m2
ϕϕ̇ϕ = −3ȧ

a
ϕ̇2

⇒ d

dt

[
1

2
ϕ̇2 +

1

2
m2

ϕϕ
2
]
= −3ȧ

a
ϕ̇2

• Then, take the oscillation average

⇒ d

dt
⟨ρϕ⟩ ≃ −3ȧ

a
⟨ϕ̇2⟩ ≃ −3ȧ

a
⟨ρϕ⟩

• ρϕ behaves as the energy density of NR matter

⇒ ρϕ ∝ a−3 (consistent with w = 0)
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Stable scalar field with mϕ ≫ H can be DM

Ωϕh
2 ≃ Ωch

2 ×
(
mϕ

1 eV

)2 ( ϕnow
4× 10−15 GeV

)2

Candidates:

• Axion

• · · ·

φφ

V
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Axion

• Pseudo Nambu-Goldstone boson, associated with Peccei-
Quinn symmetry

L =
αs

8πfa
aG(A)

µν G̃
(A)
µν

fa : axion decay constant

• Axion acquires mass after QCD condensation

ma ≃
z1/2

1 + z

fπmπ

fa
≃ 0.6 meV ×

(
fa

1010 GeV

)−1

z = mu/md ≃ 0.38− 0.58
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Bound on the axion decay constant
[Figure from PDG 2015]

Blue: Excluded

Green: Projected reach

Pink: Suggested
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⇒ 108 GeV<∼ fa
<∼ 1010 GeV
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