Search for the Higgs boson decaying to four b-quarks via two spin-zero particles

Mazin Khader - U. of Illinois at Urbana-Champaign Exotic Higgs Decay Meeting Nov 7, 2016

Physics motivation

- With the discovery of the Higgs, the next effort has been to see how well it fits into the Standard Model (SM)
- Available measurements constrain exotic decays in the SM to 34% at 95% C.L.
 - Simple extensions of the SM has the Higgs decay to two new spinzero particles, a

- Spin zero particle can address a few open ended questions in physics:
 - Potential mediator between dark matter and SM particles
 - Allows electroweak baryogensis as explanation of the observed matter/antimatter asymmetry
 - Alleviate the naturalness problem of the Higgs boson mass

Signal Overview

- O In many models where a contains Yukawa couplings, a → bb is the dominant decay mode above when m_a is above b-pair production threshold
- The kinematics of the b-quarks depend on the spinzero particle's mass
 - As the spin-zero particle mass decreases, the bquarks from the same parent tend to be more collimated

The b-quarks tend to have very low pT

b

b

Search for h → aa → bbbb in association with a W boson

Paper published in EPJC using 2015 data (3.2 fb⁻¹)

Jets

B-quarks in jets found with b-tagging, at 77% efficiency working point

Electrons or Muons

Used to trigger

Help distinguish from multi-jet backgrounds

Missing Transverse Energy

Also help distinguish from multi-jet

Signal regions: one lepton and 3 or 4 jets with 3 or 4 b-tags

Mistags and possible b-parton overlaps affect b-jet multiplicity

Backgrounds

OMain background process: tt

- Semileptonic tt events can look like the signal signature and enter signal regions
 - Lepton comes from one W
 - b-jets come from top decays and mistagged hadronic W decay products

- Additional radiation in tī events can cause them to be classified into signal regions
 - tt+bb leads to more bjets
 - tt+cc can lead to more b-jets through mistags

Backgrounds

Additional background: W+jets

- Lepton comes from one W
- Jets from additional QCD processes in event
 - ▶ Radiative g → bb
 - Other radiation leading to mistags

Example multijet entering 3j3b

- Additional background: Multijet
 - Jets can "fake" a lepton in the detector
 - Many jets from QCD processes

Signal and Background Separation

Significant amount of background events in signal regions

- Strong effort to understand background estimations necessary
- Maximize separation of signal and background using multivariate method
 - Exploit kinematic differences between signal and backgrounds using a BDT

	3j3b	4j3b	4j4b
Signal Yields	10 ± 2	9 ± 1	3 ± 1
Total Background	1640 ± 58	4270 ± 130	165 ± 15

N_{jet} and N_{b-jet} regions

10 backgrounds have lower BDT values

Control Regions

- In order to understand background modeling in the signal regions, control regions are defined
 - Defined as close to the signal regions as possible with different jet and b-tag multiplicities
 - Overestimation (underestimation) of backgrounds could result in removal (creation) of an excess!
- No single, dominating background in each control region, the combination of all of them allows control over the background processes

control regions

Profile Likelihood Fit

Perform profile likelihood fit to data/MC in control and signal regions simultaneously

Control regions estimate the main background processes

Profile systematic uncertainties

 \bigcirc Variables fed into fit \rightarrow different distributions depending on the region

Control regions: Σ jet pT

Signal regions: BDT output

- Main systematic uncertainties
 - tt normalization and modeling
 - Uncertainties related to b-tagging
- Good agreement between data/MC in the control regions
 - Total systematic uncertainty constrained

Data/MC Comparisons - Signal Regions

Ensuring the background modeling is correct in control regions, the data in the signal regions can be studied

Most sensitive region - 4j4b

	3j3b	4j3b	4j4b
Signal Yields	10 ± 2	9 ± 1	3 ± 1
Total Background	1640 ± 58	4270 ± 130	165 ± 15
Data	1646	4302	166

3j3b 4j3b 4j4b Events / 0.1 Events / 0 Events / 0. 🔶 Data 2015 🔶 Data 2015 - Data 2015 ATLAS ATLAS ATLAS 10^{8} 10⁷ WH WH WH $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 10⁶ 107 10⁶ tt + light tt + light tt + light 3 jets, 3 b-tags 4 jets, 3 b-tags 4 jets, 4 b-tags tt + cc tt + cc tt + cc $H \rightarrow 2a \rightarrow 4b, m_a = 60 \text{ GeV}$ $H \rightarrow 2a \rightarrow 4b, m_a = 60 \text{ GeV}$ $H \rightarrow 2a \rightarrow 4b, m_a = 60 \text{ GeV}$ 10⁵ 10⁶ 10⁵ tt + bb tt + bb tt + bb 10⁵ 10⁴ Non-tt Non-tt Non-tt 10⁴ 10⁴ 10³ 10³ 10² 10³ 10² 10² 10 10⁻¹ 10 10⁻¹ 10⁻² 10-3 10-2 Pred. Pred. Data / Pred 1.15 1.45 1.15 1.05 1.05 1.15 Data / | 0.95 Data / 0.95 0.85 0.85 0.85 0.55 0.75 0.75 0.25 0.2 0.4 0.6 0.8 0.6 0.8 0.4 -0.6 -0.4-0.2 0 -0.6 -0.4-0.2 0.2 0.4 -0.6 -0.4 -0.2 0 0.2 0.6 13 BDT output (3j, 3b) BDT output (4j, 4b) BDT output (4j, 3b)

- Since no significant excess is observed in the signal regions, set limits on $\sigma(WH) \times BR(H \rightarrow aa) \times BR(a \rightarrow b\overline{b})^2$
 - Close to the SM cross section for WH production

- Major limiting factor in the analysis is statistics
 - Better expected sensitivity with more data
 - Currently gathered 36 fb⁻¹ of data for 2015+2016

Will add ZH production channel

- Improve sensitivity with additional channel
- Final signature changes to have two leptons

Limits become weaker as a mass decreases

- □ Collimating b-quarks change jet/bjet multiplicity → different final state
- Need to consider new strategies to optimize for this region

Current Efforts for Low Mass Regime

OInstead of looking for 3 or 4 jets with 1 b-parton \rightarrow 2 large jets with 2 b-partons

- Looked at signal efficiency for events with 2 jets each with 2 b-partons truth matched
 - Signal acceptance increases with **larger jets** and **lower pT** thresholds
 - Looking for 4 jets with 1 b-parton yielded efficiencies ~1% for jets above 20 GeV
- Challenging effort to double b-tag has not been done before in the low pT regime

Collaborating with SLAC

Signal efficiency @ m=20 GeV

Current Efforts for Low Mass Regime

- Investigating how to double b-tag low pT, large radius jets
- First looking at a simple BDT to discriminate jets with 2 b-partons vs jets with 0/1 bparton
 - Using b-tagging/kinematic information from subjets in large jets as input
- O Promising first start, currently working to improve performance

Conclusions/Next Steps

- Search has been done for Higgs decaying to two spin-zero particles decaying to b-pairs in WH production
 - No previous attempt in ATLAS or CMS
 - Analysis using full 2015 data (3.2 fb⁻¹) has been published in EPJC <u>arXiv:1606.08391</u>
 - No significant excess with respect to the SM observed
- Analysis team optimizing for next iteration using full 2015+2016 luminosity (36 fb⁻¹)
- Optimizing search to also accommodate the dilepton channel (ZH production)
- O Developing new techniques to improve sensitivity in low mass regime

Backup

