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Higgs Mechanism: Scalar Couplings Structure

Bosonic sector:

• EWSB gives mass to W+,W�,Z bosons

• Higgs couplings proportional to m2
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Fermionic sector:

• After introducting Higgs field, can add
Yukawa terms to Lagrangian

• Higgs couplings proportional to fermion mass

gHf f̄ = Yf =
mf

v

• v is Higgs field vacuum expectation value

• Loops (e.g. �, gluon) sensitive to BSM physics
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Higgs-fermion interactions: Yukawa couplings

ghff̄ =
mf

�
ghV V =

2m2
V

�

⇤ ⇠

s
�3

mf

 Higgs interactions to vector bosons: defined by symmetry breaking 
 Higgs interactions to fermions: ad-hoc hierarchical Yukawa couplings∝mf

 Yukawa couplings not imposed by fundamental principle 
 Enhanced Yukawa couplings in BSM scenarios  
[Phys. Rev. D80, 076002, Phys. Lett. B665 (2008) 79, Phys.Rev. D90 (2014) 115022,…] 
 Unitarity bounds (through EFT) for fermion mass 
generation scale (1st/2nd generation)

[Phys. Rev. Lett. 59, 2405 (1987); Phys.Rev. D71 (2005) 093009]

<20 TeV
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4.5(3.4)σ
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Higgs-fermion interactions: The story so far

ATLAS-CONF-2015-044

JHEP 1405 (2014) 104

3.2(3.5)σ

Progress in Higgs boson properties: 
 mass known to 0.19% 
 bosonic decays measured to ~20-30%  

In fermion sector, different picture: 
 τ-lepton: direct evidence by ATLAS and CMS for h→ττ 
 e,µ: no evidence→non-universality 
 t-quark: no firm evidence for ttH; indirect evidence 
 b-quark: no evidence for h→bb in LHC; mild excesses 
 c-quark: no direct evidence, loose bounds from h→bb 
 u/d/s-quarks: no direct searches available



K. Nikolopoulos / SLAC, 08 Nov 2016 / Searches for Higgs boson decays to a meson and a photon 4

Exclusive Decays h→Qγ

FIG. 1: The Feynman diagrams for the direct amplitude for H → V + γ at order α0
s. The shaded

blob represents the quarkonium wave function. The momenta that are adjacent to the heavy-quark

lines are defined in the text.

FIG. 2: The Feynman diagram for the indirect amplitude for H → V + γ. The hatched circle

represents top-quark or W -boson loops, and the shaded blob represents the quarkonium wave

function.

• In the direct process, the Higgs boson decays into a heavy quark-antiquark (QQ̄) pair,

one of which radiates a photon before forming a quarkonium with the other element

of the pair.

• In the indirect process, the Higgs boson decays through a top-quark loop or a vector-

boson loop to a γ and a γ∗ (virtual photon). The γ∗ then decays into a vector quarko-

nium.

The Feynman diagrams for the direct and indirect processes are shown in Figs. 1 and 2,

respectively. It is the quantum interference between these two processes that provides phase

3

“Direct” contribution “Indirect” contribution

We take mH = 125.9 ± 0.4 GeV, and we obtain Γ(H → γγ) = 9.565 × 10−6 GeV from

the values of the Higgs-boson total width and branching fraction to γγ in Refs. [11, 12].

We estimate the uncertainties in the indirect amplitude along the lines that were suggested

in footnote 2 of Ref. [8]. In Γ(H → γγ), we take the uncertainty from uncalculated higher-

order corrections to be 1%, and the uncertainties that arise from the uncertainties in the

top-quark mass mt and the W -boson mass mW to be 0.022% and 0.024%, respectively. We

take the uncertainties in the leptonic decay widths to be 2.5% for the J/ψ and 1.3% for

the Υ. We estimate the uncertainties in the indirect amplitude from uncalculated mass

corrections to be m2
V /m

2
H . We have not included the effects of the uncertainty in mH , as it

is expected that that uncertainty will be significantly reduced in Run II of the LHC.

The uncertainties in the direct amplitude arise primarily from the uncertainties in φ0,

⟨v2⟩, and uncalculated corrections of order α2
s, order αsv2, and order v4. We estimate the

order-α2
s correction to be 2%, the order-αsv2 correction to be 5% for the J/ψ and 1.5% for

the Υ, and the order-v4 correction to be 9% for the J/ψ and 1% for the Υ. The uncertainties

in the direct amplitude that arise from the uncertainties in mc and mb are 0.6% in the case

of the J/ψ and 0.1% in the case of the Υ, and so they are negligible in comparison with the

other uncertainties in the direct amplitude.

Our results for the widths are7

Γ(H → J/ψ + γ) =
∣

∣(11.9± 0.2)− (1.04± 0.14)κc
∣

∣

2 × 10−10 GeV, (53a)

Γ[H → Υ(1S) + γ] =
∣

∣(3.33± 0.03)− (3.49± 0.15)κb
∣

∣

2 × 10−10 GeV, (53b)

Γ[H → Υ(2S) + γ] =
∣

∣(2.18± 0.03)− (2.48± 0.11)κb
∣

∣

2 × 10−10 GeV, (53c)

Γ[H → Υ(3S) + γ] =
∣

∣(1.83± 0.02)− (2.15± 0.10)κb
∣

∣

2 × 10−10 GeV. (53d)

The SM values for the widths (κQ = 1) are

ΓSM(H → J/ψ + γ) = 1.17+0.05
−0.05 × 10−8 GeV, (54a)

ΓSM[H → Υ(1S) + γ] = 2.56+7.30
−2.56 × 10−12 GeV, (54b)

ΓSM[H → Υ(2S) + γ] = 8.46+7.79
−5.35 × 10−12 GeV, (54c)

ΓSM[H → Υ(3S) + γ] = 10.25+7.33
−5.45 × 10−12 GeV. (54d)

7 We do not include results for the ψ(2S) because a value for ⟨v2⟩[ψ(2S)] does not exist in the literature

and because it is likely that v2 for the ψ(2S) is so large that the theoretical uncertainties in the width

would be very large.

18

photon

meson 
decay 
products

Higgs

Small angular separation 
of decay products

 h→Qγ decays: a clean probe on Yukawa couplings of 1st and 2nd generation quarks  
 Q is a vector meson or quarkonium state 

 Two contributions: direct and indirect amplitude 
 Direct amplitude: provides sensitivity to Yukawa couplings 
 Indirect amplitude: larger contribution than direct amplitude  
 Destructive interference

 Exclusive decays lead to distinct experimental signatures 
 High-pT isolated quarkonium recoiling against  
 high-pT isolated photon

Phys.Rev. D90 (2014) 11, 113010



 Z→Qγ decays also interesting 
 Experimentally unconstrained 

 LEP accurately measured b-/c-quark 
couplings (~1%) 
 light quark couplings less constrained 

Sensitive to BSM contributions
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Exclusive Decays h→Qγ

JHEP 1504 (2015) 101
Decay mode Branching ratio asymptotic LO

Z0 → π0γ (9.80 +0.09
− 0.14 µ ± 0.03f ± 0.61a2 ± 0.82a4) · 10−12 7.71 14.67

Z0 → ρ0γ (4.19 +0.04
− 0.06 µ ± 0.16f ± 0.24a2 ± 0.37a4) · 10−9 3.63 5.68

Z0 → ωγ (2.89 +0.03
− 0.05 µ ± 0.15f ± 0.29a2 ± 0.25a4) · 10−8 2.54 3.84

Z0 → φγ (8.63 +0.08
− 0.13 µ ± 0.41f ± 0.55a2 ± 0.74a4) · 10−9 7.12 12.31

Z0 → J/ψ γ (8.02 +0.14
− 0.15 µ ± 0.20f

+0.39
− 0.36 σ) · 10−8 10.48 6.55

Z0 → Υ(1S) γ (5.39 +0.10
− 0.10 µ ± 0.08f

+0.11
− 0.08 σ) · 10−8 7.55 4.11

Z0 → Υ(4S) γ (1.22 +0.02
− 0.02 µ ± 0.13f

+0.02
− 0.02 σ) · 10−8 1.71 0.93

Z0 → Υ(nS) γ (9.96 +0.18
− 0.19 µ ± 0.09f

+0.20
− 0.15 σ) · 10−8 13.96 7.59

Table 4: Predicted branching fractions for various Z → Mγ decays, including error
estimates due to scale dependence (subscript “µ”) and the uncertainties in the meson
decay constants (“f”), the Gegenbauer moments of light mesons (“an”), and the width
parameters of heavy mesons (“σ”). See text for further explanations.

our case, on the other hand, p2 = m2
Z is equal to the mass of the decaying heavy gauge boson,

in which case the above expression does not exhibit a 1/k2 pole, but is instead proportional
to 1/m2

Z . Hence we conclude that A = 0 in (68). Note that in the limit k2 → 0 one obtains
from (69)

1

m2
Z

(

1

ϵ
+ ln

m2
Z

µ2
− iπ + const.

)

, (70)

which is precisely of the form of our (bare) hard-scattering coefficients.

3.4 Phenomenological results

We are now ready to present detailed numerical predictions for the various radiative decay
modes. We start with the decays of the Z boson, using relation (35). Besides the input
parameters already mentioned, we need the Z-boson mass mZ = (91.1876± 0.0021)GeV and
total width ΓZ = (2.4955±0.0009)GeV [45]. When squaring the decay amplitudes, we expand
the resulting expressions consistently to first order in αs. The imaginary parts of the form
factors in (42) do not enter at this order. Our results are presented in Table 4. Significant
uncertainties in our predictions arise from the hadronic input parameters, in particular the
meson decay constants (see Appendix B) and the various Gegenbauer moments. Their impact
is explicitly shown in the table. Our error budget also includes a perturbative uncertainty,
which we estimate by varying the factorization scale by a factor of 2 about the default value
µ = mZ . All other uncertainties, such as those in the values of Standard Model parameters,
are negligible. Note also that power corrections from higher-twist LCDAs are bound to be
negligibly small, since they scale like (ΛQCD/mZ)2 for light mesons and at most like (mM/mZ)2

for heavy ones. The predicted branching fractions range from about 10−11 for Z0 → π0γ to
about 10−7 for Z0 → J/ψ γ. In the last row, the symbol Υ(nS) means that we sum over
the first three Υ states (n = 1, 2, 3). Strong, mode-specific differences arise foremost from the
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vector mesons, we find

Br(h → J/ψ γ) = (2.95± 0.07fJ/ψ ± 0.06direct ± 0.14h→γγ) · 10−6 ,

Br(h → Υ(1S) γ) = (4.61± 0.06fΥ(1S)

+1.75
− 1.21 direct ± 0.22h→γγ) · 10−9 ,

Br(h → Υ(2S) γ) = (2.34± 0.04fΥ(2S)

+0.75
− 0.99 direct ± 0.11h→γγ) · 10−9 ,

Br(h → Υ(3S) γ) = (2.13± 0.04fΥ(3S)

+0.75
− 1.12 direct ± 0.10h→γγ) · 10−9 .

(45)

In these cases there is an extra source of theoretical uncertainty related to the calculation of the
direct contribution to the decay amplitude. Note that there is an almost perfect cancellation
between the direct and indirect contributions to the h → Υ(nS) γ decay amplitudes, and as
a consequence the resulting branching ratios are roughly three orders of magnitude smaller
than the h → J/ψ γ branching fraction. For comparison, we note that the branching ratios
found in [32] read (2.79 +0.16

− 0.15) · 10−6 for J/ψ, (0.61 +1.74
− 0.61) · 10−9 for Υ(1S), (2.02 +1.86

− 1.28) · 10−9 for
Υ(2S) and (2.44 +1.75

− 1.30) · 10−9 for Υ(3S). We find good agreement with the results reported by
these authors except for the decay h → Υ(1S) γ, where their value is about a factor 7 smaller
than ours. The reason is that we do not neglect the imaginary part of the direct contribution
to ∆Υ(1S) in (42), which prevents

∣

∣1−∆Υ(1S)

∣

∣

2
from becoming arbitrarily small.

Our predictions may also be compared with the upper limits obtained from a recent first
analysis of these rare decays reported by the ATLAS collaboration. They are Br(h → J/ψ γ) <
1.5 ·10−3, Br(h → Υ(1S) γ) < 1.3 ·10−3, Br(h → Υ(2S) γ) < 1.9 ·10−3 and Br(h → Υ(3S) γ) <
1.3 · 10−3, all at 95% CL [20]. It will require an improvement by a factor 500 to become
sensitive to the h → J/ψ γ mode in the SM, while the SM branching fractions for the decays
h → Υ(nS) γ are out of reach at the LHC. Nevertheless, as we will discuss below, these decay
modes allow for very interesting new-physics searches. With 3 ab−1 of integrated luminosity,
about 1.7× 108 Higgs bosons per experiment will have been produced by the end of the high-
luminosity LHC run [11]. If the J/ψ is reconstructed via its leptonic decays into muon pairs,
the effective branching ratio in the SM is Br(h → J/ψ γ → µ+µ−γ) = 1.8 ·10−7, meaning that
about 30 events can be expected per experiment. If also the decays into e+e− can be used,
then ATLAS and CMS can hope to collect a combined sample of about 120 events. A detailed
discussion of the experimental prospects for reconstructing these events over the background
can be found in [9]. Concerning the h → φγ decay mode, a reconstruction efficiency ϵφγ = 0.75
was assumed for the φγ final state in [10], which appears to us as an optimistic assumption.
In the SM one expects about 400ϵφγ events per experiment in this mode, meaning that the
two experiments can hope to look at a combined sample of several hundred events. Likewise,
in the SM one expects about 2900ϵρ0γ events per experiment in the decay mode h → ρ0γ.

In Figure 6 we show our predictions for the ratio of branching fractions (times 1000) defined
in (37) in the plane of the parameters κ̄V /κeffγγ and ¯̃κV /κeffγγ . We focus on the most interesting
cases V = φ, J/ψ and Υ(1S). The corresponding plots for V = ρ0, ω would look very similar
to that for V = φ (apart from the overall scale of the branching fractions), while the plots for
higher Υ(nS) resonances would look very similar to that for the Υ(1S) meson. For orientation,
we mention that a value of 0.4 in these plots corresponds to a h → V γ branching fraction of
about 10−6, assuming that the h → γγ branching fraction is SM like. This assumption will be
implicit whenever we quote absolute branching ratios below; otherwise the quoted numbers

19

JHEP 1508 (2015) 012

 Substantial recent interest from the theory community regarding branching ratio 
estimates and feasibility:

and
∆Υ(1S) =

[

(0.948± 0.040) + i(0.130± 0.019)
] κb
κeffγγ

+ 0.0184− 0.0015i ,

∆Υ(2S) =
[

(1.014± 0.054) + i(0.141± 0.022)
] κb
κeffγγ

+ 0.0207− 0.0015i ,

∆Υ(3S) =
[

(1.052± 0.060) + i(0.148± 0.025)
] κb
κeffγγ

+ 0.0221− 0.0015i .

(43)

Approximate expressions for κ̄ρ0 , κ̄ω and κ̄φ have been given in (22) and (23). The constant
terms in the above results show the tiny power-suppressed corrections. Only for the Υ(nS)
states they reach the level of percent. Our complete expressions for the CP-odd coefficients ∆̃V

are also given in Appendix E. It is a good approximation to only keep the direct contributions
in these terms, which are likely to give rise to the dominant effects. Their coefficients are the
same as in the expressions above, but with κ̄q replaced by ¯̃κq and κb replaced by κ̃b.

It is interesting to compare our result for the quantities ∆V with corresponding expressions
obtained by other authors. From [10] one can extract ∆ρ0 = (0.095 ± 0.020) (2κ̄u + κ̄d)/3,
∆ω = (0.092± 0.021) (2κ̄u + κ̄d) and ∆φ = (0.130± 0.027)κ̄s, while from [32] one can obtain
∆J/ψ = (0.392±0.053)κ̄c, ∆Υ(1S) = (1.048±0.046)κb, ∆Υ(2S) = (1.138±0.053)κb and ∆Υ(3S) =
(1.175± 0.056)κb. These values are systematically higher than ours due to the fact that these
authors have not (or not fully) included QCD radiative corrections and RG evolution effects
in the direct contributions. For the Υ(nS) states it is important to keep the small imaginary
parts of the direct contributions, since in the SM the real parts almost perfectly cancel in the
combinations

∣

∣1−∆V

∣

∣ in (37). The result for ∆ω obtained in [10] misses the contribution from
ω−φ mixing and contains a sign mistake in front of κ̄d. Note also that our predictions for the
∆V parameters of light mesons are significantly more accurate than those obtained in [10].

4 Phenomenological results

We begin by quoting our benchmark results for the h → V γ branching fractions in the SM.
For a Higgs mass of mh = (125.09± 0.024) GeV, the SM value of the h → γγ branching ratio
is (2.28± 0.11) · 10−3 [57]. Using this result, we obtain for the decays into light vector mesons

Br(h → ρ0γ) = (1.68± 0.02fρ ± 0.08h→γγ) · 10−5 ,

Br(h → ωγ) = (1.48± 0.03fω ± 0.07h→γγ) · 10−6 ,

Br(h → φγ) = (2.31± 0.03fφ ± 0.11h→γγ) · 10−6 ,

(44)

where we quote separately the uncertainties due to the vector-meson decay constant fV and the
h → γγ branching ratio, the latter being the dominant source of uncertainty. Our predictions
are systematically lower and more accurate than those obtained in [10], where the values
Br(h → ρ0γ) = (1.9 ± 0.15) · 10−5, Br(h → ωγ) = (1.6 ± 0.17) · 10−6 and Br(h → φγ) =
(3.0 ± 0.13) · 10−6 are quoted. While the first two results are compatible with ours within
errors, there is a significant difference for the important mode h → φγ. For decays into heavy

18
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The LHC, ATLAS, and CMS

ATLAS

CMS

LHC

ALICE

LHCb

High Quality data collected!
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h/Z→J/ψγ and h/Z→Y(nS)γ (n=1,2,3)

FIG. 1: The Feynman diagrams for the direct amplitude for H → V + γ at order α0
s. The shaded

blob represents the quarkonium wave function. The momenta that are adjacent to the heavy-quark

lines are defined in the text.

FIG. 2: The Feynman diagram for the indirect amplitude for H → V + γ. The hatched circle

represents top-quark or W -boson loops, and the shaded blob represents the quarkonium wave

function.

• In the direct process, the Higgs boson decays into a heavy quark-antiquark (QQ̄) pair,

one of which radiates a photon before forming a quarkonium with the other element

of the pair.

• In the indirect process, the Higgs boson decays through a top-quark loop or a vector-

boson loop to a γ and a γ∗ (virtual photon). The γ∗ then decays into a vector quarko-

nium.

The Feynman diagrams for the direct and indirect processes are shown in Figs. 1 and 2,

respectively. It is the quantum interference between these two processes that provides phase

3

ATLAS first search for exclusive h/Z→Qγ decays 
 Q = J/ψ or Y(nS), n=1,2,3 

Event Selection 
 single muon and dimuon trigger 
 |ηµ|<2.5, pTµ>20,3 GeV, pTµµ>36 GeV 
 |ηγ|<2.47 (excluding 1.37<|ηγ|<1.52), pTγ>36 GeV 
 µµ and γ isolation,  
 |mµµ - mJ/ψ|<0.15 (0.20) GeV barrel (endcap) 8<mµµ<12 GeV 
 |Lxy /σLxy|<3 
 Δφ(µµ,γ)>0.5 

 Total efficiency  
 h→J/ψ(→µµ)γ~22% 
 h→Υ(→µµ)γ~ 28% 
 Z→J/ψ(→µµ)γ~12% 
 Z→Υ(→µµ)γ~15%
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h/Z→J/ψγ and h/Z→Y(nS)γ: Mass Resolution

Phys.Rev.Lett. 114 (2015) 121801

 Simple event categorisation 
 4 detector-driven categories 

 Muon pseudorapidity (×2) 
 Photon conversion (×2) 

 Mass resolution: 1.2-1.8%  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h/Z→J/ψγ and h/Z→Y(nS)γ: Mass Resolution

converted γ

unconverted γ

barrel endcap

Phys.Rev.Lett. 114 (2015) 121801

 Simple event categorisation 
 4 detector-driven categories 

 Muon pseudorapidity (×2) 
 Photon conversion (×2) 

 Mass resolution: 1.2-1.8%  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h/Z→J/ψγ and h/Z→Y(nS)γ: Background

Phys.Rev.Lett. 114 (2015) 121801

 Inclusive quarkonium with jet “seen” as γ 
 combinatoric background: small contribution 
 contribution from Q+γ production 

 Nonparametric data-driven background model 
 Begin with loose sample of candidates 
 Model kinematic and isolation distributions 
 Generate “pseudo”-background events 
 Apply selection to “pseudo”-candidates 

 Y(nS)γ: also Z→µµγFSR from side-band fit



Systematics Uncertainties - Signal and Background

Signal Yield Uncertainty: Several sources of systematic uncertainty on the H and
Z signal yields are considered, all modeled with nuisance parameters in likelihood:

Source Signal Yield Uncertainty Estimated From

Total H cross section 12% QCD scale variation and
PDF uncertaintiesTotal Z cross section 4%

Integrated Luminosity 2.8%
Calibration observable and
vdM scan uncertainties

Trigger E�ciency 1.7%

Data driven techniques with
Z ! `+`�, Z ! `+`�� and
J/ ! µ+µ� events

Photon ID E�ciency Up to 0.7%

Muon ID E�ciency Up to 0.4%

Photon Energy Scale 0.2%

Muon Momentum Scale Negligible

Search for rare Higgs and Z boson decays to � � 32 / 32

 Signal Yield Uncertainty: Several sources of systematic uncertainty on the h and Z 
signal yields are considered, all modelled by nuisance parameters in likelihood:
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h/Z→J/ψγ and h/Z→Y(nS)γ: Systematics

 Background Shape Uncertainty: Estimated from modifications to modeling 
procedure (e.g. shifting/warping input distributions), shape uncertainty included in 
likelihood as a shape morphing nuisance parameter
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h/Z→J/ψγ and h/Z→Y(nS)γ: Results

Phys.Rev.Lett. 114 (2015) 1121801

 Multi-observable fit   
 mµµγ, pTµµγ for J/ψγ 
 mµµγ, pTµµγ,mµµ for Υ(nS)γ 

 No significant excess 
above background observed
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h/Z→J/ψγ and h/Z→Y(nS)γ: Results

Phys.Rev.Lett. 114 (2015) 12, 121801

Theory

95% CL upper limits on decay Branching Ratios: 
 𝓞(10-3) for Higgs boson (SM production) 
 𝓞(10-6) for Z boson 

 Indicate non-universal Higgs boson 
coupling to quarks [Phys.Rev. D92 (2015) 033016, JHEP 1508 
(2015) 012]



 invariant mass [GeV]-µ+µ
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T

-µ+µp

 (13 TeV, 2016)-10.9 fb

CMS
Preliminary

Dimuon	invariant	mass	in	vicinity	of	J/ψ

5

DP-2016-027

Phys.Lett. B753 (2016) 341

 CMS search for h→J/ψγ 
 extending the h→llγ studies 
 used 19.7 fb-1 at 8 TeV 

 Event Selection 
 single muon and a photon, both pT>22 GeV 
 |ηµ|<2.4, pTµ>23,4 GeV, pTµµ>40 GeV 
 |ηγ|<1.44, pTγ>40 GeV 
 µµ and γ isolation,  
 2.9 < mµµ < 3.3 GeV 
 ΔR(µ,γ)>1 for each muon 
 muon impact parameter requirements  

 transverse <2mm 
 longitudinal <5mm
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h→J/ψγ from CMS
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CMS h→J/ψγ

background-only fit to the data

Phys.Lett. B753 (2016) 341

Fit over the 110-150 GeV mass range. 
Background: 2nd degree polynomial 
Signal: Crystal Ball + Gaussian 

 No excess above background observed 
 95% CL upper limit BR(H→J/ψγ) < 1.5x10-3  → 540 times the SM prediction



 New ATLAS analysis based on 2.7 fb-1 at 13 TeV collected in 2015 
 Higgs decay h→φγ sensitive to strange quark Yukawa coupling 

 probing light quark Yukawa coupling was considered impossible at the LHC 
 very challenging to access with inclusive H→ss decays! 

 Looking for new physics through anomalous H→ss couplings 
 possible in various BSM scenarios, would modify BR(h→φγ) 

 Z→φγ not directly constrained by existing measurements
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Search for h/Z→φγ

implies real κ̄q, κV;γ, and κ̄qq0 ¼ κ̄"q0q. Note that κ̄q and κ̄qq0 are
normalized to the SM b-quark Yukawa coupling. The SM
limit corresponds to κγ ¼ κV ¼ 1, and κ̄s ¼ ms=mb ≃ 0.020,
κ̄d ¼ md=mb ≃ 1.0 × 10−3, κ̄u ¼ mu=mb ≃ 4.7 × 10−4.
The quark masses are evaluated at μ ¼ mh using NNLO
running in the M̄S scheme with low-energy inputs from
Ref. [14]. The κ̄qq0 vanish in the SM. Any deviations from
these relations would signal the presence of new physics.
Constraints from the current data.—In Ref. [7] the LHC

inclusive production rate was used to place an indirect
bound on the charm Yukawa coupling. Here, we adapt this
analysis to the other Yukawa couplings, κ̄i. The current
ATLAS [15], CMS [16], and Tevatron [17] Higgs measure-
ments are included (based on Tables 13 and 14 of Ref. [18]),
as are the indirect constraints from the LEP electroweak
precision measurements [19]. For simplicity, correlations
between the different measurements are neglected and
asymmetric uncertainties are symmetrized. The quark anti-
quark Higgs-fusion cross section is evaluated at next-to-
leading order in αs based on the bottom fusion cross section
obtained in Ref. [20] using MSTW parton distribution
functions [21]. Below, we check that our fit results are
stable against uncalculated higher-order corrections by
varying our production cross sections by 40%, the estimated
theoretical error at next-to-leading order [20]. The resulting
shifts in the bounds on the κ̄i are extremely small.
We begin with the flavor-conserving couplings. A naive

χ2 fit to the data that fixes all Higgs couplings to their SM
values, except for one of the up, down, or strange Yukawa
couplings at a time, leads to the 95% confidence level
(C.L.) bounds

jκ̄uj < 1.0; jκ̄dj < 0.9; jκ̄sj < 0.7: ð3Þ

If all of the Higgs couplings (including h → WW;
ZZ; γγ; gg; Zγ; bb̄ and ττ̄) are allowed to vary from their
SM values, we get the weaker 95% C.L. bounds

jκ̄uj < 1.3; jκ̄dj < 1.4; jκ̄sj < 1.4: ð4Þ

The 95% C.L. upper bounds obtained for the off-
diagonal couplings, when modifying only a single
Yukawa coupling at a time (or allowing for modification
of the other Higgs couplings as above), are

jκ̄qq0 j < 0.6ð1Þ; ð5Þ

for q; q0 ∈ u; d; s; c; b and q ≠ q0. The bounds are 10%–
20% stronger for couplings only involving sea quarks, as
their slightly smaller direct production cross section does
not compensate for the increased decay width.
Inclusive Higgs rate measurements cannot distinguish

between the individual κ̄qq0 . The weakest indirect bound
from low-energy observables is found to be jκ̄bsj<8×10−2

[22] (see also Refs. [23,24]). However, such bounds are
model dependent. For instance, if the Higgs boson is part of

a multiplet that approximately conserves the flavor sym-
metries, its contributions could be (partially) canceled by
other members of the multiplet. The latter could mostly
decay to light quarks or have reduced production rates, thus
remaining unobserved.
Flavor-conserving photonic decays.—We begin with

h → ϕγ. The decay amplitude receives two dominant
contributions, which we denote as direct and indirect;
see Fig. 1. The indirect contribution proceeds through
the hγγ coupling, followed by the fragmentation of γ" → ϕ.
In our analysis, we use the on-shell h → γγ amplitude (2).
The error due to this is small, Oðm2

ϕ=m
2
hÞ. Similarly, the

indirect contribution from h → γZ is neglected, because it
is suppressed by the off-shell Z. The direct amplitude
involves a hard h → ss̄γ vertex, where an intermediate
s-quark line with an off-shellnessQ2 ∼Oðm2

hÞ is integrated
out. Its evaluation is a straightforward application of QCD
factorization [25]. The largest sensitivity to the Higgs–
strange quark coupling is due to the interference of the
two amplitudes. (The direct amplitude by itself yields
BRh→ϕγ ∼ 10−11 in the SM.) However, the interference
only involves the real part of the coupling, Reðκ̄sÞ. Working
in the limit of real κ̄s, the h → ϕγ decay amplitude is

Mϕ
ss ¼

Qse
2

ϵϕ × ϵγ
!
κ̄s
mb

v
fϕ⊥h1=uūi

ϕ
⊥ þ 4α

πv
κγAγ

fϕm2
h

mϕ

"
;

ð6Þ

where the first and second terms are the direct and indirect
contributions; fϕ⊥ and h1=uūiϕ⊥ are the decay constant and
inverse moment of the light-cone distribution amplitude
(LCDA) defined in Eq. (8), Qse ¼ −e=3 is the strange
quark electric charge, and εγ and εϕ are the γ and ϕ
polarization vectors. We have used the definition
hϕjJμEMð0Þj0i ¼ fϕmϕϵ

μ
ϕ for the ϕ decay constant fϕ,

where JμEM ¼
P

fQff̄γμf is the electromagnetic current.

Note that for CP-violating couplingsMϕ
ss is sensitive to the

phase between Aγ and κ̄γ .
The LCDA convolution integral is

h1=uūiϕ⊥ ¼
Z

1

0
du

ϕϕ
⊥ðuÞ

uð1 − uÞ
: ð7Þ

FIG. 1 (color online). Direct-amplitude diagram (left) and
indirect-amplitude diagram (right) contributing to h → ϕγ.
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Z→µµ candidate with 25 reconstructed vertices from the 2012 run. Only good quality tracks with pT>0.4GeV are shown
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h/Z→φγ: Analysis Strategy
 Exploit φ→Κ+Κ- decays, BR=49% 
 Distinctive topology 

 Pair of collimated high-pT isolated tracks  
recoils against high-pT isolated photon 

 Enabled by dedicated trigger (Sep 2015) 
 Photon (pTγ>35 GeV) and isolated di-track 
(at least one pT>15 GeV) consistent with mφ 
 Efficiency ~80% w.r.t offline selection

photon

meson 
decay 
products

Higgs

Small angular separation of 
decay products

Phys. Rev. Lett. 117, 111802
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h/Z→φγ: Event Selection
 Tracks  

 No particle-ID available at momentum range, all tracks considered Kaons 
 looking for two opposite charged tracks; leading pT>20GeV, sub-leading pT>15 GeV 
 di-track consistent with φ-meson mass within 20 MeV 
 track-based isolation applied 
 di-track system must satisfy: 

Photons 
“Tight” identification criteria 
 pTγ>35 GeV 
 |ηγ|<2.47 and not in 1.37<|ηγ|<1.52 
 Isolated (calorimeter- and track-based) 
 Δφ(K+K-,γ)>0.5 

 Total signal acceptance/efficiency  
 h→φγ→KKγ ~ 18% 
 Ζ→φγ→KKγ ~ 8%

Phys. Rev. Lett. 117, 111802

Event Selection I - � ! K+K� Selection

No ⇡/K/p particle ID available for tracks in relevant pT range - assume K
hypothesis for all tracks

Leading track pT > 20 GeV and sub-leading track pT > 15 GeV

Require consistency with � mass: |mKK �m�| < 20 MeV

Require fractional track isolation (additional tracks within �R < 0.2) of di-track
pair < 0.10

The di-track system transverse momentum must satisfy:

pKK
T >

8
><

>:

40GeV, for mKK�  91GeV

40 + 5/34⇥ (mKK� � 91) GeV, for 91GeV < mKK� < 125GeV

45GeV, for mKK� � 125GeV

Search for H, Z ! � � with ATLAS 9 / 17

Full event selection w/o mKK requirement
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h/Z→φγ: Efficiency and Resolution
Phys. Rev. Lett. 117, 111802

 Inclusive analysis 
 Total signal efficiency:  

18% for Higgs boson 
 8% for Z boson Muon 

 Mass resolution ~1.8%
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h/Z→φγ: Background
 Dominated by QCD production γ+jet and multi-jet events 
 Exclusive “peaking” backgrounds (e.g. h/Z→µµγFSR) estimated to be negligible 
 Nonparametric data-driven model; same procedure as in h/Z→J/ψγ

Phys. Rev. Lett. 117, 111802

Background 
Region 
(loose  
selection) 

loose selection 
+PTKK>45 GeV

loose selection 
+γ-isolation

loose selection 
+ΚΚ-isolation



Systematic Uncertainties

Signal Yield Uncertainty: Several sources of systematic uncertainty on the H and
Z signal yields are considered, all modeled with nuisance parameters in likelihood:

Source H/Z Yield Uncertainty Estimated From

Total H cross section 12%
QCD scale variation and
PDF uncertainties

Total Z cross section 5.5% ATLAS Measurement

Integrated Luminosity 5%
Calibration observable and
vdM scan uncertainties

Photon ID E�ciency 2.5%
Data driven techniques with
Z ! `+`� and Z ! `+`��

Photon Energy Scale 0.3%

Trigger E�ciency 2%

Tracking E�ciency 6% Tracking studies within dense jets

Background Shape Uncertainty: Estimated from modifications to modeling
procedure (e.g. shifting pT

KK and neglecting the weakest correlation included in the
model), shape uncertainty included in likelihood as a shape morphing NP
† Method described in: EPJC 73 (2013) 2518 (arXiv:1302.4393)

Search for rare Higgs and Z boson decays to � � 31 / 32
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h/Z→φγ: Results

Final discriminant is mΚΚγ 
95% confidence level upper limit using CLs with 
profile likelihood test statistic 
Largest observed excess at ~100GeV; 2σ effect 
No significant H or Z signal observed,  
 Branching ratio limits at the level of 10-3 (10-6) for 
Higgs (Z) boson decays

Phys. Rev. Lett. 117, 111802



 HL-LHC is a Higgs boson factory 
 𝓞(200M) Higgs bosons 

 ATLAS HL-LHC projections for h/Z→J/ψγ 
 Nice and, relatively, clean final state 
 Small branching ratio, few events expected 
 At SM sensitivity large contribution from h→µµγFSR~3×h→J/ψγ and (Z→µµγFSR for Z) 
 Sensitive to “anomalous” h→γγ loop; use ratio to h→γγ 
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h/Z→Qγ: in the future
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The results presented in Tables 2 and 4 demonstrate that the introduction of a simple multivariate analysis
provides a 20% improvement in the expected limits.

Expected branching ratio limit at 95% CL
B (H ! J/ �) [ 10�6 ] B (Z ! J/ �) [ 10�7 ]

Cut Based Multivariate Analysis Cut Based
300 fb�1 185+81

�52 153+69
�43 7.0+2.7

�2.0
3000 fb�1 55+24

�15 44+19
�12 4.4+1.9

�1.1

Standard Model expectation
B (H ! J/ �) [ 10�6 ] B (Z ! J/ �) [ 10�7 ]

2.9 ± 0.2 0.80 ± 0.05

Table 2: The expected branching ratio limit at 95% CL for 300 fb�1 and 3000 fb�1 scenarios. The Standard Model
expectations are also reported for comparison.

Expected branching ratio limit at 95% CL
Bkgd. Syst. Unc. Scenario 2%

B (H ! J/ �) [ 10�6 ] Median 1� 2�
Cut Based Analysis 52 +21

�14
+51
�24

Multivariate Analysis 43 +18
�12

+43
�20

B (Z ! J/ �) [ 10�7 ] Median 1� 2�
Cut Based Analysis 4.3 +1.7

�1.2
+3.7
�2.0

Table 3: Comparison of the expected branching ratio limit at 95% CL for 3000 fb�1, assuming the alternative back-
ground systematic uncertainty scenario.

Expected � ⇥ B limit at 95% CL
� (pp ! H) ⇥ B (H ! J/ � ) [fb]
Cut Based Multivariate Analysis

300 fb�1 10.4+2.9
�4.5 8.6+2.4

�3.7
3000 fb�1 3.1+0.9

�1.3 2.5+0.7
�1.0

Table 4: The expected limits at 95% CL on the Higgs cross section times branching fraction for 300 fb�1 and
3000 fb�1 scenarios.
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Figure 1: mµ+µ�� (upper plots) and p
µ+µ��
T (lower plots) projections of the simultaneous fit. The pseudo-data

correspond to the expected event yields for 300 fb�1 (a) and 3000 fb�1 (b). In the figure, for reference only, the
Higgs and Z signal are shown assuming SM branching ratio enhanced by factors of 100 and 10, respectively.
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LHC upgrade timescale

• HL-LHC upgrade proposed
� Goal to collect 3000 fb�1 by 2035

• Corresponding proposals for upgrades of the LHC experiments

� Central feature of ATLAS upgrade programme a new, all silicon tracking system

36 of 39

today Run III HL-LHCRun IIRun I

Yukawa sector is the least explored (and 
motivated) part of the Standard Model 
→ Particularly for 1st/2nd generation.  

New Physics could  be hiding here! 
  

A number of suggestions appearing in 
literature currently: exclusive decays, 
charm tagging, Higgs boson kinematic 

properties, etc. 

New field of study in Higgs sector; 
experimental and theoretical ingenuity 

required to elucidate this corner of the SM!
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Summary
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Figure 1: mµ+µ�� (upper plots) and p
µ+µ��
T (lower plots) projections of the simultaneous fit. The pseudo-data

correspond to the expected event yields for 300 fb�1 (a) and 3000 fb�1 (b). In the figure, for reference only, the
Higgs and Z signal are shown assuming SM branching ratio enhanced by factors of 100 and 10, respectively.
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SM Higgs boson production at the LHC
86%  

mH = 125 GeV

7% 
mH = 125 GeV

5% 
mH = 125 GeV

1.5% 
mH = 125 GeV

3.1.2 Higgs production at hadron machines

In the Standard Model, the main production mechanisms for Higgs particles at hadron

colliders make use of the fact that the Higgs boson couples preferentially to the heavy

particles, that is the massive W and Z vector bosons, the top quark and, to a lesser extent,

the bottom quark. The four main production processes, the Feynman diagrams of which are

displayed in Fig. 3.1, are thus: the associated production with W/Z bosons [241, 242], the

weak vector boson fusion processes [112, 243–246], the gluon–gluon fusion mechanism [185]

and the associated Higgs production with heavy top [247,248] or bottom [249,250] quarks:

associated production with W/Z : qq̄ −→ V + H (3.1)

vector boson fusion : qq −→ V ∗V ∗ −→ qq + H (3.2)

gluon − gluon fusion : gg −→ H (3.3)

associated production with heavy quarks : gg, qq̄ −→ QQ̄ + H (3.4)

q

q̄

V ∗

•

H

V

•
q

q
V ∗

V ∗

H

q

q

•
g

g

H
Q •

g

g

H

Q

Q̄

Figure 3.1: The dominant SM Higgs boson production mechanisms in hadronic collisions.

There are also several mechanisms for the pair production of the Higgs particles

Higgs pair production : pp −→ HH + X (3.5)

and the relevant sub–processes are the gg → HH mechanism, which proceeds through heavy

top and bottom quark loops [251,252], the associated double production with massive gauge

bosons [253, 254], qq̄ → HHV , and the vector boson fusion mechanisms qq → V ∗V ∗ →
HHqq [255, 256]; see also Ref. [254]. However, because of the suppression by the additional

electroweak couplings, they have much smaller production cross sections than the single

Higgs production mechanisms listed above.
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electroweak couplings, they have much smaller production cross sections than the single

Higgs production mechanisms listed above.
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Higgs boson at the LHC
86%  

mh = 125 GeV

7% 
mh = 125 GeV

5% 
mh = 125 GeV

1.5% 
mh = 125 GeV

3.1.2 Higgs production at hadron machines

In the Standard Model, the main production mechanisms for Higgs particles at hadron

colliders make use of the fact that the Higgs boson couples preferentially to the heavy

particles, that is the massive W and Z vector bosons, the top quark and, to a lesser extent,

the bottom quark. The four main production processes, the Feynman diagrams of which are

displayed in Fig. 3.1, are thus: the associated production with W/Z bosons [241, 242], the

weak vector boson fusion processes [112, 243–246], the gluon–gluon fusion mechanism [185]

and the associated Higgs production with heavy top [247,248] or bottom [249,250] quarks:

associated production with W/Z : qq̄ −→ V + H (3.1)

vector boson fusion : qq −→ V ∗V ∗ −→ qq + H (3.2)

gluon − gluon fusion : gg −→ H (3.3)

associated production with heavy quarks : gg, qq̄ −→ QQ̄ + H (3.4)
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Figure 3.1: The dominant SM Higgs boson production mechanisms in hadronic collisions.

There are also several mechanisms for the pair production of the Higgs particles

Higgs pair production : pp −→ HH + X (3.5)

and the relevant sub–processes are the gg → HH mechanism, which proceeds through heavy

top and bottom quark loops [251,252], the associated double production with massive gauge

bosons [253, 254], qq̄ → HHV , and the vector boson fusion mechanisms qq → V ∗V ∗ →
HHqq [255, 256]; see also Ref. [254]. However, because of the suppression by the additional

electroweak couplings, they have much smaller production cross sections than the single

Higgs production mechanisms listed above.
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SM Higgs boson decays

mH~125 GeV gives access to several decay channels 
Gauge bosons: γγ, ΖΖ*, WW*, Zγ  

Fermions: bb, ττ, µµ  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h/Z→J/ψγ and h/Z→Y(ns)γ



K. Nikolopoulos / SLAC, 08 Nov 2016 / Searches for Higgs boson decays to a meson and a photon 29

h/Z→J/ψγ and h/Z→Y(ns)γ

Phys.Rev.Lett. 114 (2015) 12, 121801


