Searches for Higgs boson decays to a meson and a photon

Konstantinos Nikolopoulos University of Birmingham

Exotic Higgs Decays Meeting - SLAC 8 November 2016, Melno Park, U.S.A.

ATLAS experiment at CERN

This project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under grant agreement no 334034 (EWSB)

Higgs-fermion interactions: Yukawa couplings

- Higgs interactions to vector bosons: defined by symmetry breaking
- Higgs interactions to fermions: ad-hoc hierarchical Yukawa couplings mf

Yukawa couplings not imposed by fundamental principle
 Enhanced Yukawa couplings in BSM scenarios

[Phys. Rev. D80, 076002, Phys. Lett. B665 (2008) 79, Phys.Rev. D90 (2014) 115022,...]
Unitarity bounds (through EFT) for fermion mass generation scale (1st/2nd generation)

$$\Lambda \sim \sqrt{\frac{\upsilon^3}{m_f}}$$
 <20 TeV

[Phys. Rev. Lett. 59, 2405 (1987); Phys.Rev. D71 (2005) 093009]

Higgs-fermion interactions: The story so far

- Progress in Higgs boson properties:
- **☑ mass** known to 0.19%
- **☑** bosonic decays measured to ~20-30%
- In **fermion sector**, different picture:
- \blacksquare **T-lepton:** direct evidence by ATLAS and CMS for h \rightarrow TT
- \Box e,µ: no evidence \rightarrow non-universality
- ✓ t-quark: no firm evidence for ttH; indirect evidence
- \Box b-quark: no evidence for h \rightarrow bb in LHC; mild excesses
- \Box c-quark: no direct evidence, loose bounds from h \rightarrow bb
- u/d/s-quarks: no direct searches available

Exclusiv Decays $h \rightarrow f'$

-p+q-p

BIRMINGHAM

 \square h \rightarrow Q γ decays: a clean probe on Yukawa couplings of \mathcal{I}_{p+q}^{st} and 2^{nd}_{H} generation quarks

 $p+q+p_{\gamma}$

- Q is a vector meson or quarkonium state
- **Two contributions:** direct and indirect amplitude
 - Direct amplitude: provides sensitivity to Yukawa couplings
 - Indirect amplitude: larger contribution than direct amplitude
 - Destructive interference

Exclusive Decays $h \rightarrow Q\gamma$

Substantial recent interest from the theory community regarding branching ratio estimates and feasibility:

$$\begin{split} & \mathrm{Br}(h \to J/\psi \, \gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{\mathrm{direct}} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6} \,, \\ & \mathrm{Br}(h \to \Upsilon(1S) \, \gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} \stackrel{+1.75}{_{-1.21}}_{\mathrm{direct}} \pm 0.22_{h \to \gamma\gamma}) \cdot 10^{-9} \,, \\ & \mathrm{Br}(h \to \Upsilon(2S) \, \gamma) = (2.34 \pm 0.04_{f_{\Upsilon(2S)}} \stackrel{+0.75}{_{-0.99}}_{\mathrm{direct}} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-9} \,, \\ & \mathrm{Br}(h \to \Upsilon(3S) \, \gamma) = (2.13 \pm 0.04_{f_{\Upsilon(3S)}} \stackrel{+0.75}{_{-1.12}}_{\mathrm{direct}} \pm 0.10_{h \to \gamma\gamma}) \cdot 10^{-9} \,. \\ & \mathrm{Br}(h \to \rho^0 \gamma) = (1.68 \pm 0.02_{f_{\rho}} \pm 0.08_{h \to \gamma\gamma}) \cdot 10^{-5} \,, \\ & \mathrm{Br}(h \to \omega\gamma) = (1.48 \pm 0.03_{f_{\omega}} \pm 0.07_{h \to \gamma\gamma}) \cdot 10^{-6} \,, \\ & \mathrm{Br}(h \to \phi\gamma) = (2.31 \pm 0.03_{f_{\phi}} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-6} \,, \end{split}$$

JHEP 1504 (2015) 101

 $\mathbf{V} Z \rightarrow Q \gamma$ decays also interesting $\mathbf{V} Experimentally$ unconstrained

LEP accurately measured b-/c-quark couplings (~1%)

light quark couplings less constrained
 Sensitive to BSM contributions

Decay mode	Branching ratio
$Z^0 \to \pi^0 \gamma$	$(9.80^{+0.09}_{-0.14\mu} \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$
$Z^0 o ho^0 \gamma$	$(4.19^{+0.04}_{-0.06\ \mu} \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$
$Z^0 ightarrow \omega \gamma$	$(2.89^{+0.03}_{-0.05\mu} \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$
$Z^0 o \phi \gamma$	$\left(8.63^{+0.08}_{-0.13\mu} \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}\right) \cdot 10^{-9}$
$Z^0 o J/\psi \gamma$	$(8.02^{+0.14}_{-0.15\mu} \pm 0.20_{f-0.36\sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(1S) \gamma$	$(5.39^{+0.10}_{-0.10\ \mu} \pm 0.08_{f\ -0.08\ \sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(4S) \gamma$	$(1.22^{+0.02}_{-0.02\mu} \pm 0.13_{f-0.02\sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(nS) \gamma$	$(9.96^{+0.18}_{-0.19\mu} \pm 0.09_{f-0.15\sigma}) \cdot 10^{-8}$

The LHC, ATLAS, and CMS

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$ (n=1,2,3)

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Mass Resolution

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Mass Resolution

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Background

Inclusive quarkonium with jet "seen" as y combinatoric background: small contribution contribution from $Q+\gamma$ production Nonparametric data-driven background model Begin with loose sample of candidates Model kinematic and isolation distributions Generate "pseudo"-background events Apply selection to "pseudo"-candidates **Y(nS)y:** also $Z \rightarrow \mu \mu \gamma_{FSR}$ from side-band fit

> 100 GeV Events / 4 GeV ATLAS Inclusive Category **Inclusive Category** 90 160 Events / 4 s = 8 TeV L dt = 19.2 fb⁻¹ Loose Isol. Nominal p. Loose Isol. Nominal p_ s = 8 TeV L dt = 19.2 fb⁻¹ 80 140 $J/\psi \gamma$ channel $J/\psi \gamma$ channel Data Data 70 Incl. Bkgd. Incl. Bkgd. 120 Incl. Bkgd. Shape Syst. Incl. Bkgd. Shape Syst. **60** $Z \rightarrow J/\psi \gamma (B = 5 \times 10^{-6})$ $Z \rightarrow J/\psi \gamma (B = 5 \times 10^{-6})$ 100 $H \rightarrow J/\psi \gamma (B = 2 \times 10^{-3})$ $H \rightarrow J/\psi \gamma (B = 2 \times 10^{-3})$ **50** 80 **40** 60 **30**⊧ 40 **20** 20 **10**[⊨] 0 0 50 150 20 100 200 40 60 80 100 120 140 $p_{\tau}^{\mu^{+}\mu^{-}\gamma}$ [GeV] $m_{\mu^{+}\mu^{-}\gamma} - m_{\mu^{+}\mu^{-}} + m_{J/\psi}$ [GeV] Phys.Rev.Lett. 114 (2015) 121801

ory	Observed (Expected Background)					Sig	mal
egc			Mass Range [GeV]			Z	Η
Jat	All		80-100	115 - 135		$\mathcal{B} \ [10^{-6}]$	$\mathcal{B} [10^{-3}]$
				$I/\psi \gamma$			
BU	30	9	(8.9 ± 1.3)	5	(5.0 ± 0.9)	$1.29 {\pm} 0.07$	$1.96 {\pm} 0.24$
BC	29	8	(6.0 ± 0.7)	3	(5.5 ± 0.6)	$0.63 {\pm} 0.03$	$1.06 {\pm} 0.13$
EU	35	8	(8.7 ± 1.0)	10	(5.8 ± 0.8)	$1.37 {\pm} 0.07$	$1.47 {\pm} 0.18$
EC	23	6	(5.6 ± 0.7)	2	(3.0 ± 0.4)	$0.99 {\pm} 0.05$	$0.93 {\pm} 0.12$
				Υ	$(nS) \gamma$		
BU	93	42	(39 ± 6)	16	(12.9 ± 2.0)	$1.67 {\pm} 0.09$	$2.6 {\pm} 0.3$
BC	71	32	(27.7 ± 2.4)	5	(9.7 ± 1.2)	$0.79 {\pm} 0.04$	$1.45 {\pm} 0.18$
EU	125	49	(47 ± 6)	16	(17.8 ± 2.4)	2.24 ± 0.12	2.5 ± 0.3
EC	85	31	(31 ± 5)	18	(12.3 ± 1.9)	$1.55 {\pm} 0.08$	$1.60 {\pm} 0.20$

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Systematics

Signal Yield Uncertainty: Several sources of systematic uncertainty on the h and Z signal yields are considered, all modelled by nuisance parameters in likelihood:

Source	Signal Yield Uncertainty	Estimated From	
Total <i>H</i> cross section	12%	QCD scale variation and	
Total Z cross section	4%	PDF uncertainties	
Integrated Luminosity	2.8%	Calibration observable and vdM scan uncertainties	
Trigger Efficiency	1.7%		
Photon ID Efficiency	Up to 0.7%	Data driven techniques with	
Muon ID Efficiency	Up to 0.4%	$Z \rightarrow \ell^+ \ell^-$, $Z \rightarrow \ell^+ \ell^- \gamma$ and	
Photon Energy Scale	0.2%	$\int J/\psi ightarrow \mu^+\mu^-$ events	
Muon Momentum Scale	Negligible		

Background Shape Uncertainty: Estimated from modifications to modeling procedure (e.g. shifting/warping input distributions), shape uncertainty included in likelihood as a shape morphing nuisance parameter

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Results

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Results

Phys.Rev.Lett. 114 (2015) 12, 121801

	$95\% \ CL_s \ Upper \ Limits$						
	J/ψ	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\sum^{n} \Upsilon(nS)$		
$\mathcal{B}(Z \to \mathcal{Q}\gamma) [\ 10^{-6} \]$							
Expected	$2.0^{+1.0}_{-0.6}$	$4.9^{+2.5}_{-1.4}$	$6.2^{+3.2}_{-1.8}$	$5.4^{+2.7}_{-1.5}$	$8.8^{+4.7}_{-2.5}$		
Observed	2.6	3.4	6.5	5.4	7.9		
$\mathcal{B}(H \to \mathcal{Q}\gamma) [10^{-3}]$							
Expected	$1.2^{+0.6}_{-0.3}$	$1.8^{+0.9}_{-0.5}$	$2.1^{+1.1}_{-0.6}$	$1.8^{+0.9}_{-0.5}$	$2.5^{+1.3}_{-0.7}$		
Observed	1.5	1.3	1.9	1.3	2.0		
$\sigma\left(pp\to H\right)\times\mathcal{B}\left(H\to\mathcal{Q}\gamma\right)[\text{fb}]$							
Expected	26^{+12}_{-7}	38^{+19}_{-11}	45_{-13}^{+24}	38^{+19}_{-11}	54_{-15}^{+27}		
Observed	33	29	41	28	44		

- 95% CL upper limits on decay Branching Ratios:
 - ▶ $\mathcal{O}(10^{-3})$ for Higgs boson (SM production)
 - $\triangleright \mathcal{O}(10^{-6})$ for Z boson

Markov Indicate non-universal Higgs boson

coupling to quarks [Phys.Rev. D92 (2015) 033016, JHEP 1508 (2015) 012]

$h \rightarrow J/\psi\gamma$ from CMS

- ▶ extending the $h \rightarrow II\gamma$ studies
- ▶ used 19.7 fb⁻¹ at 8 TeV

Event Selection

- Single muon and a photon, both p_T>22 GeV
- |η_μ|<2.4, p_{Tμ}>23,4 GeV, p_{Tμμ}>40 GeV
- ▶ |η_γ|<1.44, p_{Tγ}>40 GeV
- \triangleright µµ and γ isolation,
- ▶ 2.9 < m_{µµ} < 3.3 GeV</p>
- $\square \Delta R(\mu, \gamma) > 1$ for each muon
- muon impact parameter requirements
 - transverse <2mm</p>
 - Iongitudinal <5mm</p>

$CMS \ h {\rightarrow} J/\psi \gamma$

Source	Uncertainty	-	19.7 fb ⁻¹ (8 TeV
Integrated luminosity (ref. [37])	2.6%	e /	
Theoretical uncertainties:		- G	
PDF	2.6-7.5%	0	Background model
Scale	0.2–7.9%	S/2	$\pm 1 \sigma \pm 2 \sigma$
$\mathrm{H} ightarrow \gamma^* \gamma ightarrow \ell \ell \gamma$ branching fraction	10%	ent;	8 500x SM H \rightarrow (J/ Ψ) $\gamma \rightarrow \mu\mu\gamma^{-}$
Experimental uncertainties:		- 0 >	background-only fit to the data
Pileup reweighting	0.8%	Ш	
Trigger efficiency, μ (e) channel	4(2)%		
Muon reconstruction efficiency	11%		
Electron reconstruction efficiency	3.5%		
Photon reconstruction efficiency	0.6%		
$m_{\ell\ell\gamma}$ scale, μ (e) channel	0.1 (0.5)%		
$m_{\ell\ell\gamma}$ resolution, μ (e) channel	10 (10)%		

Fit over the 110-150 GeV mass range. Background: 2nd degree polynomial

Signal: Crystal Ball + Gaussian

No excess above background observed

■ 95% CL upper limit BR(H \rightarrow J/ $\psi\gamma$) < 1.5x10⁻³ \rightarrow 540 times the SM prediction

Sample	Signal events before selection	Signal events after selection	Number of events in data
-	$m_{\rm H} = 125 {\rm GeV}$	$m_{\rm H} = 125 {\rm GeV}$	$120 < m_{\ell\ell\gamma} < 130 \text{GeV}$
μμγ	13.9	3.3	151
$ee\gamma$	25.8	1.9	65
$(J/\psi \rightarrow \mu\mu)\gamma$	$0.065(J/\psi) + 0.32$ (non-res.)	$0.014(J/\psi) + 0.078$ (non-res.)	12

0 110 115

125

130

135

Phys.Lett. B753 (2016) 341

120

K. Nikolopoulos / SLAC, 08 Nov 2016 / Searches for Higgs boson decays to a meson and a photon

145

 $m_{\mu\mu\gamma}$ (GeV)

150

140

Search for $h/Z \rightarrow \phi \gamma$

✓ New ATLAS analysis based on 2.7 fb⁻¹ at 13 TeV collected in 2015

- probing light quark Yukawa coupling was considered impossible at the LHC
- ▶ very challenging to access with inclusive H→ss decays!
- \mathbf{V} Looking for new physics through anomalous H \rightarrow ss couplings
 - ▷ possible in various BSM scenarios, would modify BR(h→ ϕ γ)
- $ightarrow Z \rightarrow \phi \gamma$ not directly constrained by existing measurements

Phys. Rev. Lett. 117, 111802

Supplementary Information: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-05/

The idea is to benefit from the interference of the "direct" and "indirect" amplitudes!

Phys.Rev.Lett. 114 (2015) 101802

$BR(h \to \phi \gamma) = (2.31 \pm 0.03_{f_{\phi}} \pm 0.11_{h \to \gamma \gamma}) \cdot 10^{-6}$

JHEP 1508 (2015) 012

$h/Z \rightarrow \phi \gamma$: Analysis Strategy

Small angular separation of decay products $\mathbf{M} \in \mathbf{Exploit} \ \mathbf{\phi} \rightarrow \mathbf{K}^+ \mathbf{K}^- \ \mathbf{decays}, \ \mathbf{BR} = 49\%$ **Interpology Distinctive topology** Pair of collimated high-pT isolated tracks recoils against high-pT isolated photon meson decay **Enabled by dedicated trigger** (Sep 2015) products Higgs Photon ($p_{Ty}>35$ GeV) and isolated di-track (at least one p_T >15 GeV) consistent with m_{ϕ} photon Efficiency ~80% w.r.t offline selection

BIRMINGHAM

$h/Z \rightarrow \phi \gamma$: Event Selection

Tracks

- No particle-ID available at momentum range, all tracks considered Kaons
- Iooking for two opposite charged tracks; leading pT>20GeV, sub-leading pT>15 GeV
- di-track consistent with φ-meson mass within 20 MeV
- track-based isolation applied
- di-track system must satisfy:

 $p_T^{KK} > egin{cases} 40 \, {
m GeV}, & ext{for } m_{KK\gamma} \leq 91 \, {
m GeV} \ 40 + 5/34 imes (m_{KK\gamma} - 91) \, {
m GeV}, & ext{for } 91 \, {
m GeV} < m_{KK\gamma} < 125 \, {
m GeV} \ 45 \, {
m GeV}, & ext{for } m_{KK\gamma} \geq 125 \, {
m GeV} \end{cases}$

Photons

- ▶ "Tight" identification criteria
- ▶ pTγ>35 GeV
- ▶ $|\eta_{\gamma}| < 2.47$ and not in 1.37< $|\eta_{\gamma}| < 1.52$
- Isolated (calorimeter- and track-based)
- ▶ Δφ(K⁺K⁻,γ)>0.5
- Total signal acceptance/efficiency

 \blacktriangleright Z \rightarrow $\phi\gamma$ \rightarrow KK γ ~ 8%

h/Z $\rightarrow \phi \gamma$: Efficiency and Resolution

Inclusive analysis Total signal efficiency: 18% for Higgs boson 8% for Z boson Muon Mass resolution ~1.8%

h/Z→φγ: Background

UNIVERSITY^{OF} BIRMINGHAM 20

- Dominated by QCD production γ+jet and multi-jet events
- **Exclusive "peaking" backgrounds** (e.g. h/Z \rightarrow µµ γ FSR) estimated to be negligible
- **Nonparametric data-driven model;** same procedure as in $h/Z \rightarrow J/\psi\gamma$

$h/Z \rightarrow \phi \gamma$: Results

Source	H/Z Yield Uncertainty	Estimated From	
Total <i>H</i> cross section	12%	QCD scale variation and PDF uncertainties	
Total Z cross section	5.5%	ATLAS Measurement	
Integrated Luminosity	5%	Calibration observable and vdM scan uncertainties	
Photon ID Efficiency	2.5%	Data drivan tachniquae with	
Photon Energy Scale	0.3%	$Z \to \ell^+ \ell^- \text{ and } Z \to \ell^+ \ell^- \gamma$	
Trigger Efficiency	2%		
Tracking Efficiency	6%	Tracking studies within dense jets	

	Final	disc	rimin	ant is	тккү
--	-------	------	-------	--------	------

95% confidence level upper limit using CLs with profile likelihood test statistic

Largest observed excess at ~100GeV; 2σ effect

No significant H or Z signal observed,

Branching ratio limits at the level of 10⁻³ (10⁻⁶) for Higgs (Z) boson decays

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\;10^{-3}\;\right]$	$1.5^{+0.7}_{-0.4}$	1.4
$\mathcal{B}\left(Z\to\phi\gamma\right)\left[\;10^{-6}\;\right]$	$4.4^{+2.0}_{-1.2}$	8.3

K Nikolonoulos	/ SLAC: 08 Nov 2016	Searches for Higgs hoso	n decays to a meson and a nhoton
	OEAO, OO HOVEOIO	ocurones for miggs beso	raccays to a meson and a photon

Ob	served	(Expected)	Expecte	ed Signal		
Mass Range [GeV]						H
All		81–101	1	20 - 130	$B[10^{-6}]$	${\cal B}[10^{-3}]$
1065	288	(266 ± 9)	89	(87 ± 3)	6.7 ± 0.7	13.5 ± 1.5

Phys. Rev. Lett. 117, 111802

$h/Z \rightarrow Q\gamma$: in the future

☑ HL-LHC is a Higgs boson factory

▷ 𝒪(200M) Higgs bosons

ATLAS-PHYS-PUB-2015-043

 \checkmark ATLAS HL-LHC projections for h/Z \rightarrow J/ψγ

- ☑ Nice and, relatively, clean final state
- □ Small branching ratio, few events expected
- \Box At SM sensitivity large contribution from $h \rightarrow \mu \mu \gamma_{FSR} \sim 3 \times h \rightarrow J/\psi \gamma$ and $(Z \rightarrow \mu \mu \gamma_{FSR}$ for Z)
- \Box Sensitive to "anomalous" h $\rightarrow\gamma\gamma$ loop; use ratio to h $\rightarrow\gamma\gamma$

Summary

Additional Slides

SM Higgs boson production at the LHC

Higgs boson at the LHC

SM Higgs boson decays

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$

Phys.Rev.Lett. 114 (2015) 12, 121801

