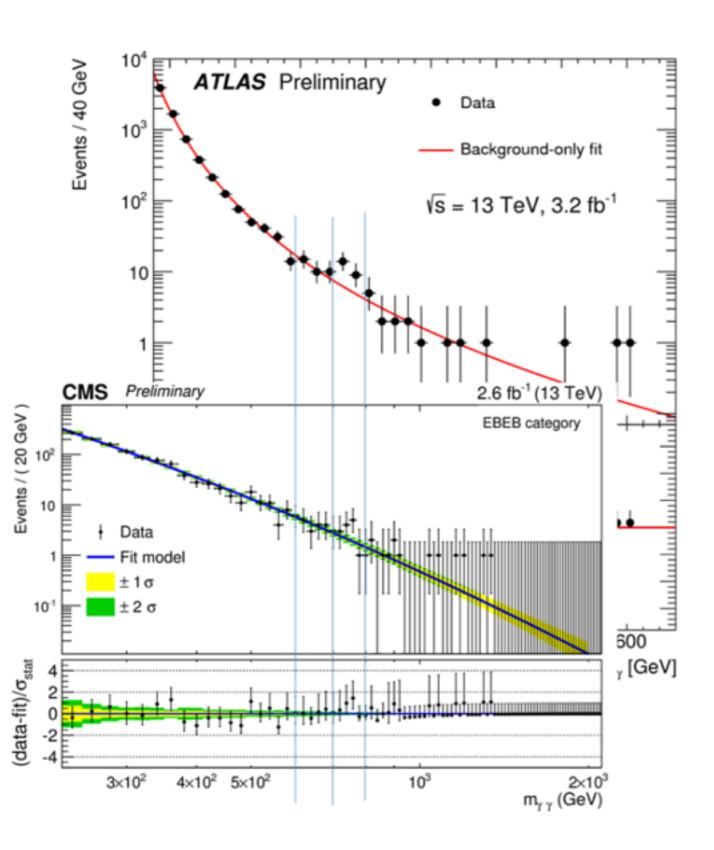
MATRIX:

A fully-differential NNLO process library (+NNLL)

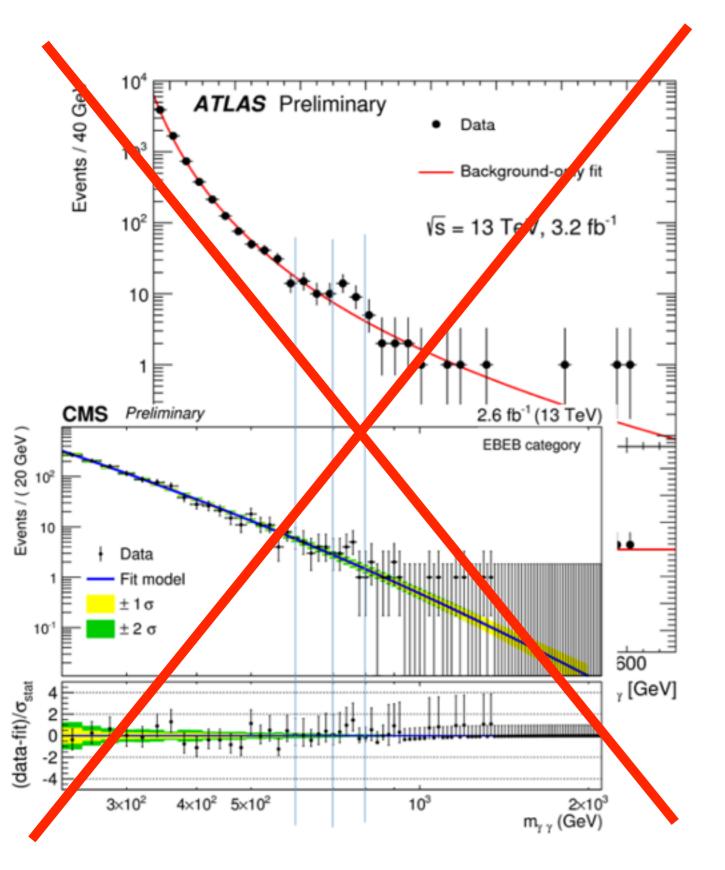
Marius Wiesemann

High Precision for Hard Processes 6, Buenos Aires (Argentina) 6-9 September, 2016

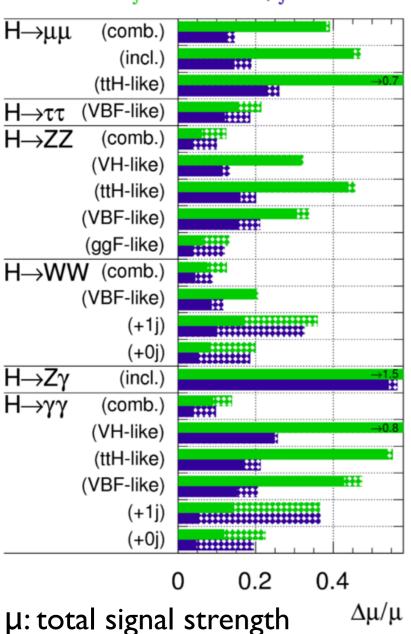
in collaboration with M. Grazzini, S. Kallweit, S. Pozzorini and D. Rathlev

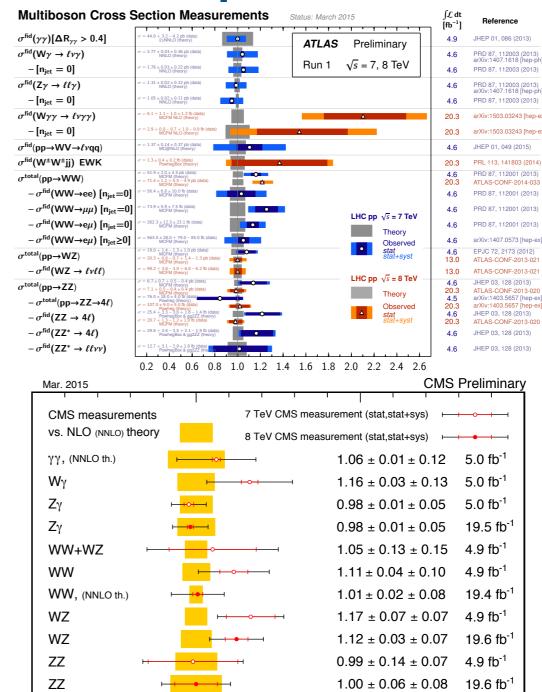

Outline

- I. Motivation for precision physics
- 2. NNLO methods
- 3. p_T subtraction and resummation
- 4. The MATRIX
- 5. ZZ and WW at NNLO+NNLL (pT resummation)
- 6. NEW: pp→WW→IIvv at NNLO (fully differential)
- 7. NEW: pp→WZ+X at NNLO (inclusive)
- 8. VERY VERY NEW+Preliminary: pp→WZ+X (fully differential)



Introduction


Universität Zürich^{UZH}

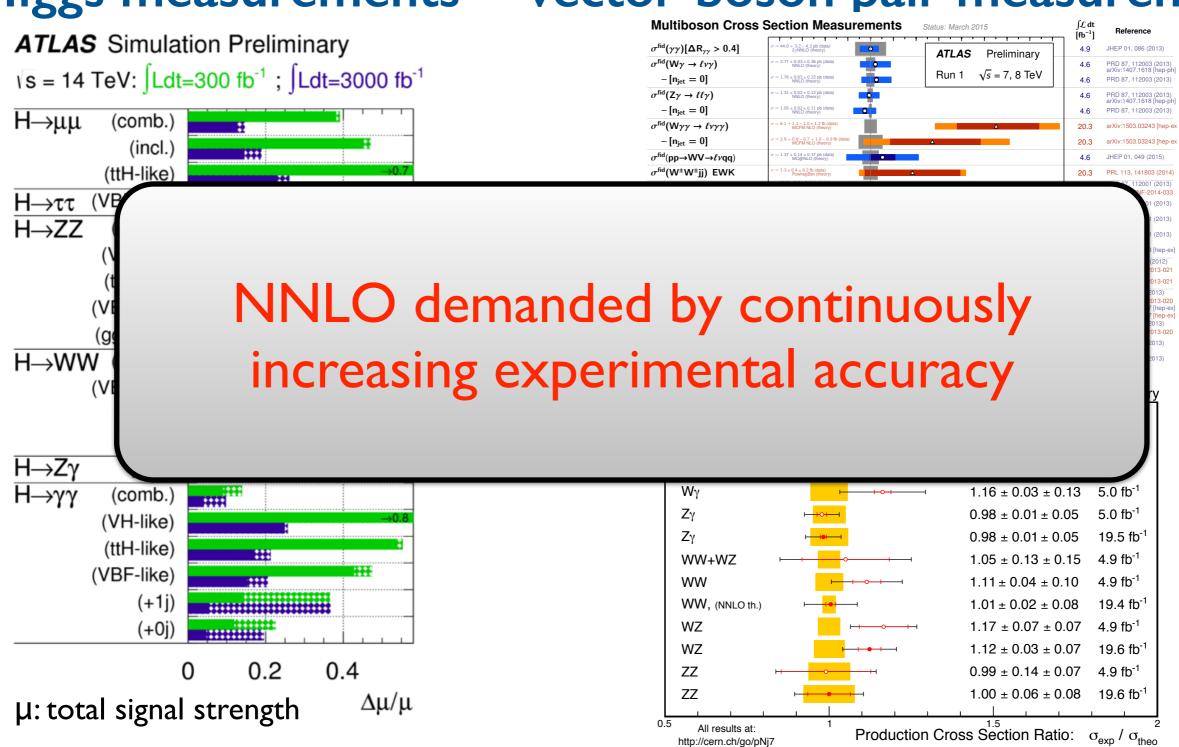

Higgs measurements

vector-boson pair measurements

$$\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$$

All vector-boson pair processes are on the Les Houches NNLO wishlist 2013

Production Cross Section Ratio: $\sigma_{\rm exp}$ / $\sigma_{\rm theo}$


All results at: http://cern.ch/go/pNj7

Introduction

Higgs measurements

vector-boson pair measurements

All vector-boson pair processes are on the Les Houches NNLO wishlist 2013

September 9, 2016

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from F+Ijet process at NLO

- p_T subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15], [Boughezal, Liu, Petriello '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

MATRIX: a fully-differential NNLO process library

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from F+Ijet process at NLO

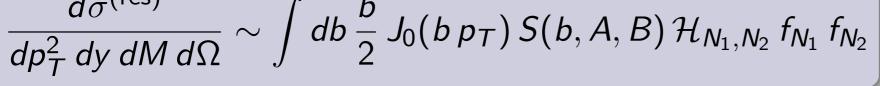
- p_T subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15], [Boughezal, Liu, Petriello '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

MATRIX: a fully-differential NNLO process library

Two-loop amplitudes required for each process!

NNLO methods

see talk by Jan Niehues

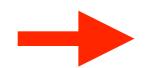

	local	not restricted	fully- automated	applications
Antenna	√	√	X	e ⁺ e ⁻ →2/3jet, ep→2jet, pp→H+jets, pp→Z+jets
STRIPPER / FKS+sec.dec	√	√	?	pp→t t-bar, singletop, pp→H+jets
Colourful	1	only e ^t e ⁻ / decays	X	H→b b-bar, e ⁺ e ⁻ →2/3jet
p _T subtraction	X	only colorless (+massive quarks)	(🗸)	pp→H, pp→Z/W, pp→γγ, pp→ZZ, pp→Z/Wγ, pp→WW,
N-jettiness subtraction	X	no massive quarks	X	pp \rightarrow H+jets, pp \rightarrow Z/W+jets, pp \rightarrow VH, pp \rightarrow YY, more to come

see talk by Hayk Sargsyan

p⊤ subtraction and resummation → see also talks by J. Mazzitelli and F. Coradeschi

Universität Zürich

$$\frac{d\sigma^{(\text{res})}}{dp_T^2\,dy\,dM\,d\Omega} \sim \int db\,\frac{b}{2}\,J_0(b\,p_T)\,S(b,A,B)\,\mathcal{H}_{N_1,N_2}\,f_{N_1}\,f_{N_2}$$


[Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06]

singular structure of F+ljet process (F -- colorless):

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

$$\int dp_T^2 \frac{d\sigma^{(\text{res})}}{dp_T^2 dy dM d\Omega} = \mathcal{H} \otimes d\sigma_{\text{LO}} \quad \left(\ln(Q^2 b^2 / b_0^2) \to \ln(Q^2 b^2 / b_0^2 + 1)\right)$$

pt subtraction master formula: [Catani, Grazzini '07]

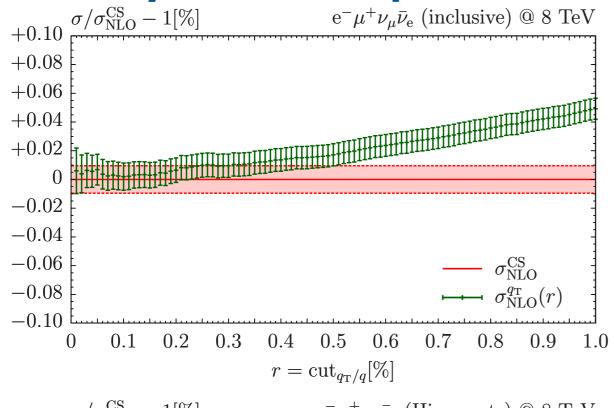
$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

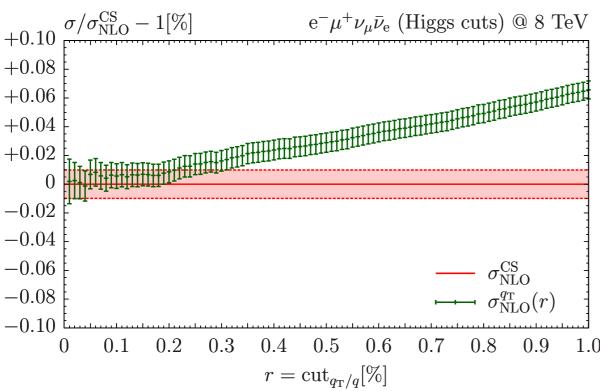
September 9, 2016

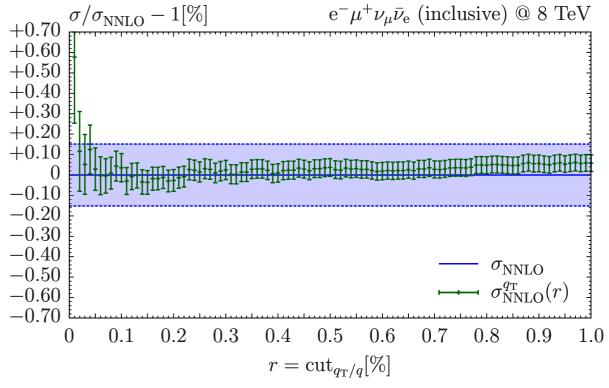
pt subtraction and resummation

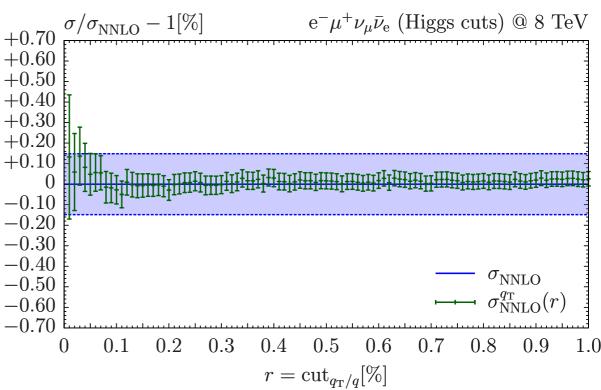
$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

practical implementation:


- subtraction not local
- both terms in squared brackets separately divergent
- introduce lower cut-off r_{cut} on dimensionless quantity $r = p_{T,WW}/m_{WW}$
- use very small r_{cut} value and integrate both terms separately down to $r \ge r_{cut}$
- assumption: for $r \le r_{cut}$ terms cancel (true up to power-suppressed terms)
- to be shown: small residual r_{cut} dependence as $r_{cut} \rightarrow 0$
- numerics forbids arbitrarily small r_{cut} values: use fit towards $r_{cut} \rightarrow 0$ limit


MATRIX: a fully-differential NNLO process library




[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

stability of r_{cut} dependence

We implemented...

The MATRIX team

Dirk "Cypher" Rathlev Massimiliano
"Morpheus"
Grazzini

Stefan
"Neo"
Kallweit

Marius
"Trinity"
Wiesemann

The MATRIX team

Dirk "Cypher" Rathlev Massimiliano
"Morpheus"

Grazzini

Stefan
"Neo"
Kallweit

Marius
"Trinity"
Wiesemann

The MATRIX framework

[Grazzini, Kallweit, Rathlev, MW] (+Hanga, Sargsyan)

Amplitudes

OPENLOOPS (COLLIER, CUTTOols, ...)

 $\begin{array}{c} \textbf{Dedicated 2-loop codes} \\ \textbf{(VVamp, GiNaC, Tdhpl}, \dots) \end{array}$

MUNICH

MUlti-chaNnel Integrator at Swiss (CH) precision

 q_{T} subtraction $\iff q_{\mathrm{T}}$ resummation

MATRIX

Munich Automates qT Subtraction and Resummation to Integrate X-sections.

The MATRIX


```
9 9 9

    Mars — ssh — 174×63

[wiesemann:-/munich-http/MATRIX] ./matrix
           | MATRIX: A fully-differential NNLO(+NNLL) process library
                      Version: 1.0.beta1
                                                              Dec 2015
            Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision --
            Automates qT-subtraction and Resummation to Integrate X-sections
           M. Grazzini
                                                       (grazzini@physik.uzh.ch)
           | S. Kallweit
                                                        (kallweit@uni-mainz.de)
           D. Rathlev
                                                        (rathlev@physik.uzh.ch)
                                                        (mariusw@physik.uzh.ch)
            MATRIX is based on a number of different computations and tools from various people and groups. Please acknowledge their efforts
            by citing the list of references which is created with every run.
            \----/
<MATRIX-READ>> Type process_id to be compiled and created. Type "list" to show
                available processes. Try pressing TAB for auto-completion. Type
                "exit" or "quit" to stop.
 <MATRIX-READ>> No suitable process_id or command has been entered. Try again...
<MATRIX-READ>> You have to choose a process_id from the following list:
                                                   || description
process_id || process
             >> p p --> H >> on-shell Higgs production
                                                  >> on-shell Z production
pzθ1
             >> pp --> Z
             >> pp --> W^-
                                                 >> on-shell W+ production, NOT FULLY TESTED YET
                                                   >> on-shell W- production, NOT FULLY TESTED YET
              >> pp --> e^- e^+
                                                  >> Z production with decay
реех02
                                                   >> Z production with decay
>> W+ production with decay, NOT FULLY TESTED YET
             >> pp --> v_e^- v_e^+
                  p p --> e^+ v e^-
                                                   >> W- production with decay, NOT FULLY TESTED YET
                  p p --> e^- v_e
                  P P --> H H
                                                   >> on-shell double Higgs production
                                                   >> on-shell gamma gamma production
ораа02
              >> p p --> gamma gamma
                                                   >> on-shell ZZ production
ppzz02
peexa03
                                                   >> Z gamma & gamma gamma with decay
                                                   >> Z gamma & gamma gamma with decay
>> ZZ & Z gamma & gamma gamma with decay
>> ZZ & Z gamma & gamma gamma with decay
>> W+ gamma with decay
>> W- gamma with decay
             >> p p --> v_e^- v_e^+ gamma
 pnenexa03
              >> pp --> e^- e^- e^+ e^+
 peeexex04
                  p p --> e^- mu^- e^+ mu^+
                  p p --> e^+ v_e^- gamma
             >> p p --> e^- v_e^+ gan
ppemxnmnex84 >> p p --> e^- mu^+ v_mu^- v_e^+
                                                   >> WW production with decay
pemexnmxθ4 >> p p --> e^- mu^- e^+ v_mu^+
                                                   >> W-Z production with decay
 peexmxnm84 >> p p --> e^- e^+ mu^+ v_mu^-
                                                   >> W+Z production with decay
          mmm>> pph21
 <MATRIX-MAKE>> Starting compilation...
```

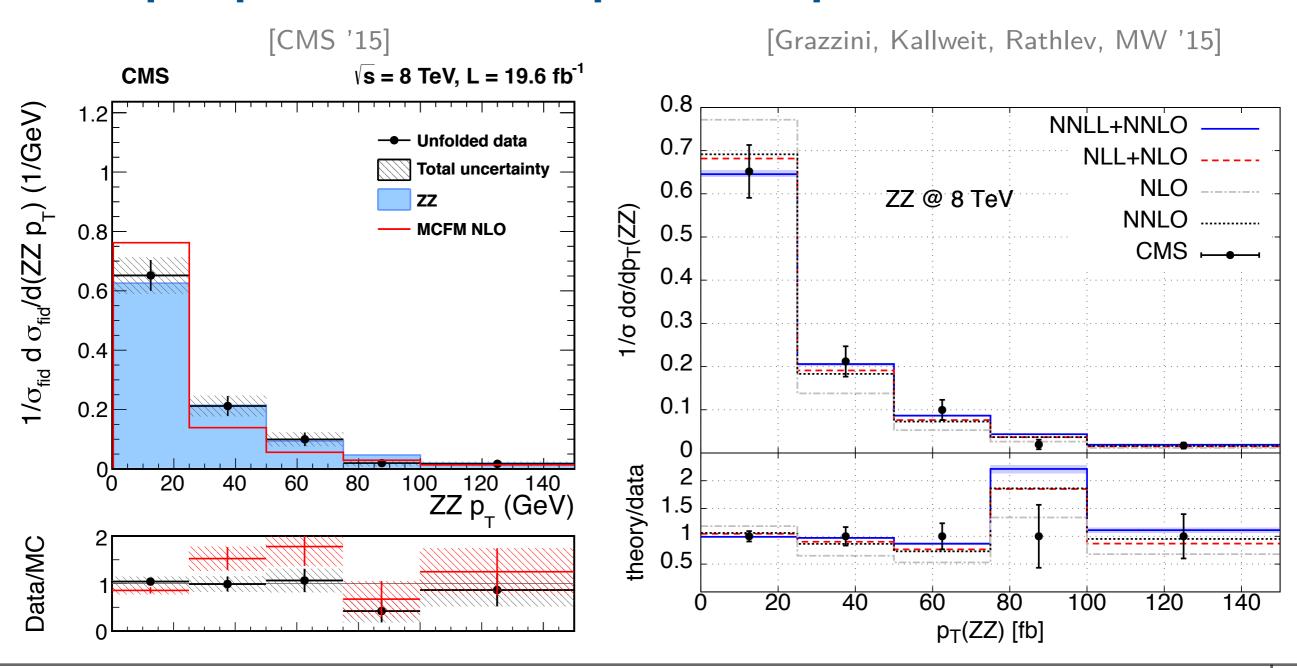
The Status

process	status	comment
$pp \rightarrow Z/\gamma^*(\rightarrow \ell^+\ell^-)$	√	validated analytically (+ DYNNLO)
pp→W→ℓv	()	to be validated
рр→Н	✓	validated analytically
pp→γγ	✓	validated with 2YNNLO
$pp \rightarrow Z\gamma \rightarrow \ell^{\dagger}\ell^{-}\gamma$	✓	[Grazzini, Kallweit, Rathlev, Torre '13]
pp→Wγ→ℓνγ	√	[Grazzini, Kallweit, Rathlev '15]
pp→ZZ	√	[Cascioli et al. '14]
pp→ZZ→4ℓ	√	[Grazzini, Kallweit, Rathlev '15]
pp→WW	✓	[Gehrmann et al. '14]
pp→WW→ℓvℓ'v'	✓	NEW HERE: fully differential
pp→WZ	✓	NEW HERE: inclusive cross section
рр→НН	√	[de Florian et al. '16]

The Status and Plan

- I. Closed beta has started!
 - PROCESSES: all processes of previous slide
 - ACCURACY: NNLO QCD
 - CURRENTLY SUPPORTED:
 - local running
 - cluster running: LSF (Ixplus), SLURM, condor; under validation: PBS
 - easy to add new schedulers which other cluster are required?
 - WHO: already used by selected experimentalists from ATLAS and CMS
- 2. Public release
 - TIME FRAME: within this year
 - further cluster support
- 3. Plans beyond first release
 - enable NNLO+NNLL p_T resummation
 - add NLO EW effects to certain processes

NNLO+NNLL resummation

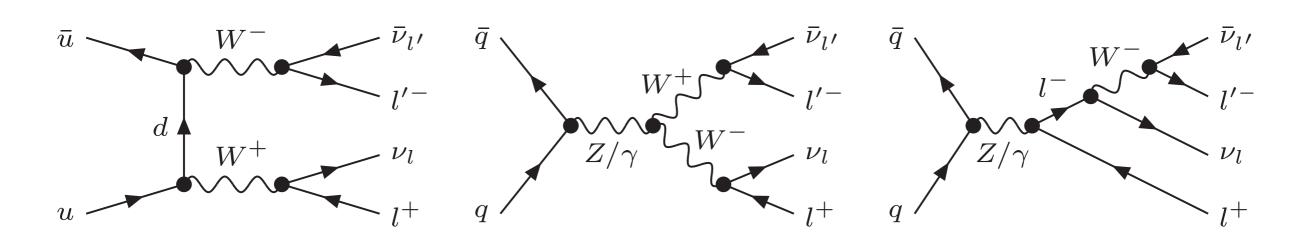


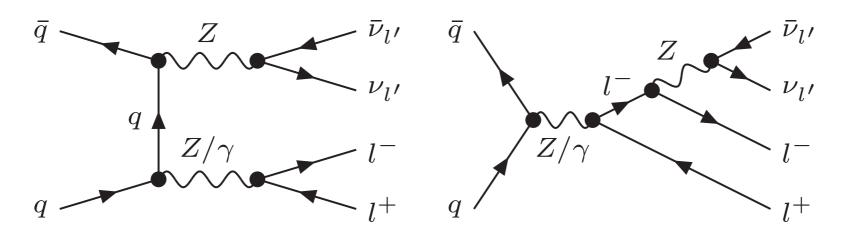
Universität Zürich^{UZH}

for ZZ and WW

[Grazzini, Kallweit, Rathlev, MW '15]

pt spectrum of ZZ pair: comparison to data




M. Wiesemann

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

- ø all pp→WW→ℓνℓ'ν' processes, including:
 - double-resonant W decays
 - single-resonant Z/γ^* decays $(pp \rightarrow Z/\gamma^* \rightarrow WW^*/\ell \nu W \rightarrow \ell \nu \ell' \nu')$
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma^* \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma^* \rightarrow \ell \nu \ell \nu)$ in equal-flavor channel

M. Wiesemann

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

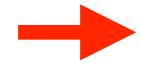
- all $pp \rightarrow WW \rightarrow \ell \nu \ell' \nu'$ processes, including:
 - double-resonant W decays
 - single-resonant \mathbb{Z}/γ^* decays $(pp \rightarrow \mathbb{Z}/\gamma^* \rightarrow WW^*/\ell \nu W \rightarrow \ell \nu \ell' \nu')$
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma^* \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma^* \rightarrow \ell \nu \ell \nu)$ in equal-flavor channel
- [®] HERE: different-flavour channel pp→WW→e v_e $µν_µ$ (for simplicity):
- inclusive
- WW signal cuts:

```
m_{ll} > 10 \,\text{GeV}, \quad \Delta R_{ll} > 0.1, \quad p_T^{\text{miss}} > 15 \,\,\text{GeV}, \quad p_T^{\text{miss, rel}} > 20 \,\,\text{GeV}
jet veto (anti-k_T, R = 0.4, p_{T,i} > 25 \,\text{GeV}, |y_i| < 4.5)
lepton cuts (p_{T,l_1} > 25 \,\text{GeV}, p_{T,l_2} > 20 \,\text{GeV}, |y_{\mu}| < 2.4, |y_e| < 1.37 \,\text{or} \, 1.52 < |y_e| < 2.47)
```

Higgs background cuts:

$$10 \,\mathrm{GeV} < m_{ll} < 55 \,\mathrm{GeV}, \quad p_{T,ll} > 30 \,\mathrm{GeV}, \quad \Delta \phi_{ll} < 1.8, \quad \Delta \phi_{ll,\nu\nu} > \pi/2, \quad p_T^{\mathrm{miss}} > 20 \,\mathrm{GeV}$$
 jet veto (anti- k_T , $R = 0.4$, $p_{T,j} > 25 \,\mathrm{GeV}$, $|y_j| < 4.5$)
lepton cuts $(p_{T,l_1} > 22 \,\mathrm{GeV}, \, p_{T,l_2} > 10 \,\mathrm{GeV}, \, |y_{\mu}| < 2.4, \, |y_e| < 1.37 \,\mathrm{or} \, 1.52 < |y_e| < 2.47)$

avoid top contamination: 4FS with all bottom final states removed. (checked against top-subtracted 5FS predicion for all fiducial rates up to ~1%) September 9, 2016


[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

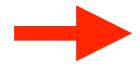
inclusive rates

fiducial rates (WW cuts)

σ [fb]	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$	$778.99 \ (8)_{-6.7\%}^{+5.7\%}$	$\overline{147.23(2)^{+3.4\%}_{-4.4\%}}$	$233.04(2)_{-7.6\%}^{+6.6\%}$
NLO	$623.47(6)^{+3.6\%}_{-2.9\%}$	$1205.11(12)^{+3.9\%}_{-3.1\%}$	$153.07(2) {}^{+1.9\%}_{-1.6\%}$	$236.19(2)_{-2.4\%}^{+2.8\%}$
NLO'+gg	$655.83(8)^{+4.3\%}_{-3.3\%}$	$1286.81(13)^{+4.8\%}_{-3.7\%}$	$166.41(3){}^{+1.3\%}_{-1.3\%}$	$267.31(4)_{-2.1\%}^{+1.5\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1370.9(11) \begin{array}{c} +2.6\% \\ -2.3\% \end{array}$	$164.1 \ (1)_{-0.8\%}^{+1.3\%}$	$261.5(2) \begin{array}{c} +1.9\% \\ -1.2\% \end{array}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO NLO	$ \begin{array}{ c c c c c } \hline 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \\ \hline \end{array} $	$0.29915(6)_{-1.0\%}^{+0.8\%} 0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg $NNLO$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.20773(5)_{-3.1\%}^{+3.2\%}$ $0.1907(3)_{-0.9\%}^{+1.2\%}$


[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

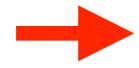
inclusive rates

fiducial rates (WW cuts)

σ [fb]	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$	+47% 778.99 (8) +5.7% +55%	$\overline{147.23(2)^{+3.4\%}_{-4.4\%}}$	$233.04(2)_{-7.6\%}^{+6.6\%}$
NLO	$623.47(6)^{+3.6\%}$	1205.11(12) + 3.9%	$153.07(2)^{+1.9\%}_{-1.6\%}$	$236.19(2)^{+2.8\%}_{-2.4\%}$
NLO'+gg	$ 655.83(8) _{-3.3\%}^{+4.5\%}$	+5.2% 1286.81(13) +4.8% +6.8%	$166.41(3)^{+1.3\%}_{-1.3\%}$	$267.31(4)^{+1.5\%}_{-2.1\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$+5.3\%$ $1370.9(11)$ $^{+2.6\%}_{-2.3\%}$ $+6.5\%$	$164.1 \ (1)_{-0.8\%}^{+1.3\%}$	$261.5(2) \begin{array}{c} +1.9\% \\ -1.2\% \end{array}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$0.29915(6)_{-1.0\%}^{+0.8\%}$ $0.19599(4)_{-4.7\%}^{+4.4\%}$ $0.20773(5)_{-3.1\%}^{+3.2\%}$
NLO	$0.24552(5)_{-4.7\%}^{+4.4\%}$	$0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)_{-3.1\%}^{+3.2\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.1907(3) \begin{array}{c} -3.1\% \\ +1.2\% \\ -0.9\% \end{array}$


[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates

fiducial rates (WW cuts)

σ [fb]	8 TeV	13 TeV	8 TeV	$13\mathrm{TeV}$
LO NLO NLO'+ gg	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	778.99 (8) +5.7% 1205.11(12) +3.9% 1286.81(13) +4.8% 1286.81(13) -3.7%	+55% $\overline{147.23(2)}_{-4}^{+3}$ +6.8% $\overline{153.07(2)}_{-1}^{+1}$ $166.41(3)_{-1}^{+1}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
NNLO	$\mid 690.4(5) \mid {}^{+2.2\%}_{-1.9\%} \longrightarrow {}^{+5.3}$	$^{8\%}$ 1370.9(11) $^{+2.6\%}_{-2.3\%}$	+6.5% 164.1 (1) ⁺¹ ₋₀	261.5(2) $+1.9%$ $-1.2%$ $-2.2%$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$0.34608(7)_{-0.7\%}^{+0.6\%}$	$0.29915(6)_{-1.0\%}^{+0.8\%}$ $0.19599(4)_{-4.7\%}^{+4.4\%}$ $0.20773(5)_{-3.1\%}^{+3.2\%}$
NLO	$0.24552(5)_{-4.7\%}^{+4.4\%}$	$0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)_{-3.1\%}^{+3.2\%}$
NNLO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \\ 0.2378(4)^{+1.3\%}_{-0.9\%} \end{vmatrix} $	$0.1907(3) \begin{array}{c} -3.1\% \\ +1.2\% \\ -0.9\% \end{array}$

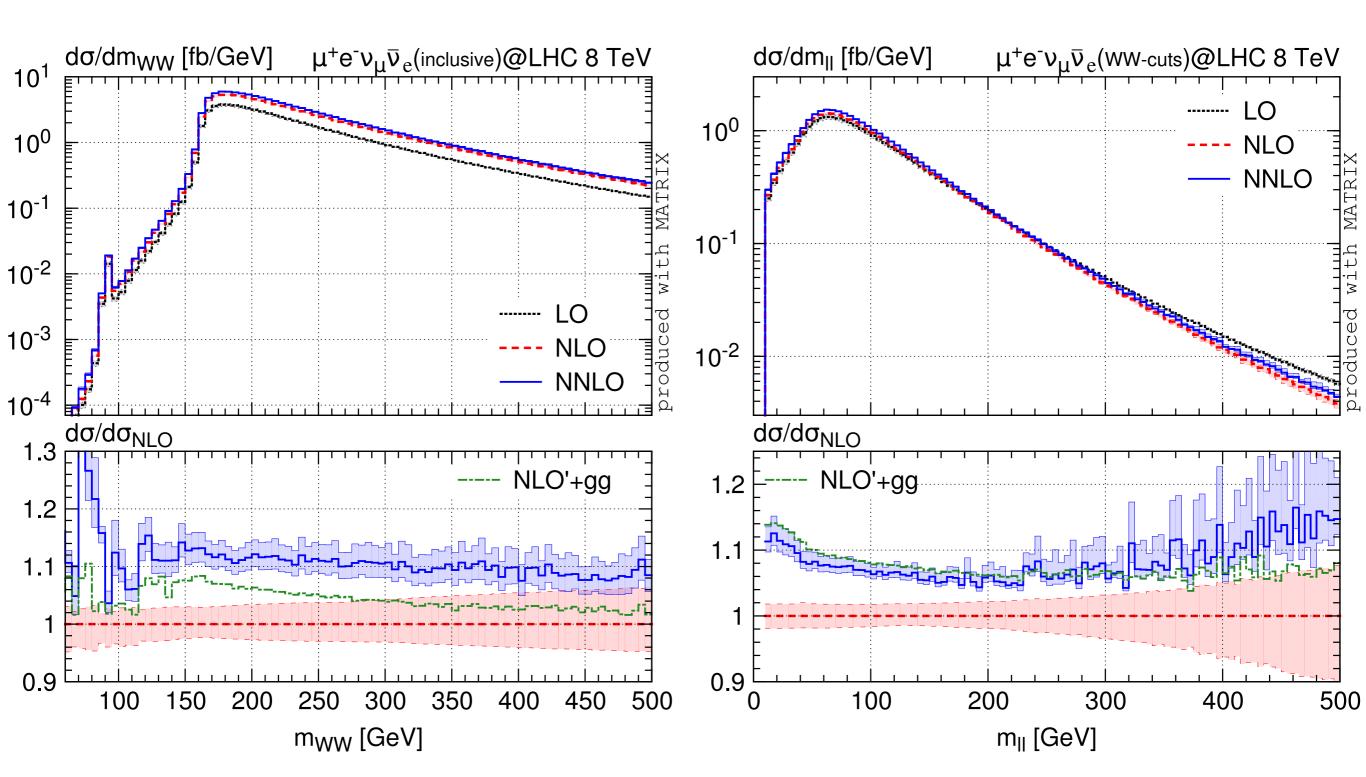
[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates

fiducial rates (WW cuts)

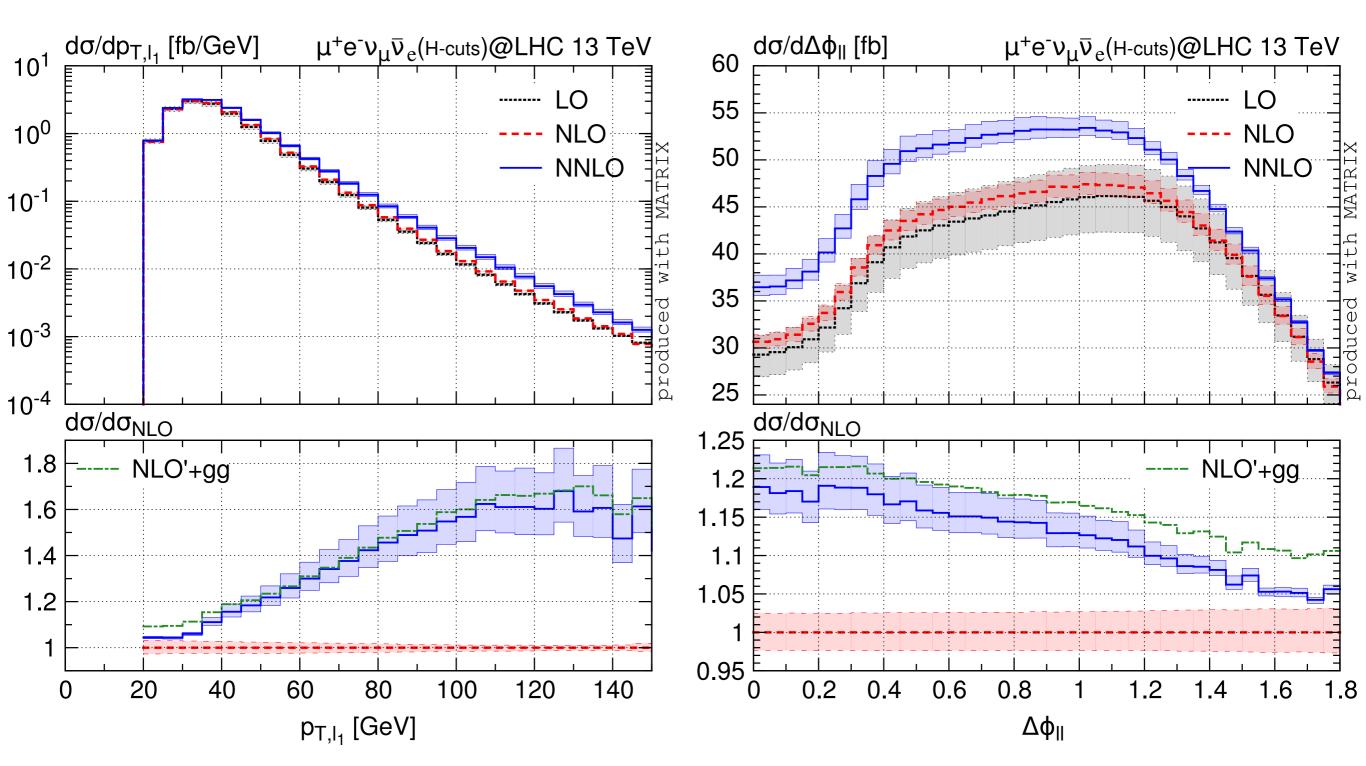
σ [fb]	m 8TeV	$13\mathrm{TeV}$	$8\mathrm{TeV}$	$13\mathrm{TeV}$
LO NLO NLO'+ gg NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	778.99 (8) +5.7% 1205.11(12) +3.9% 1286.81(13) +4.8% 1370.9(11) +2.6% -2.3%	$\begin{array}{c} & & & \\ \textbf{147.23(2)} & +3.4\% \\ \textbf{153.07(2)} & +1.9\% \\ \textbf{153.07(2)} & +1.9\% \\ \textbf{166.41(3)} & +1.3\% \\ \textbf{164.1} & (1) & +1.3\% \\ \textbf{164.1} & (1)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

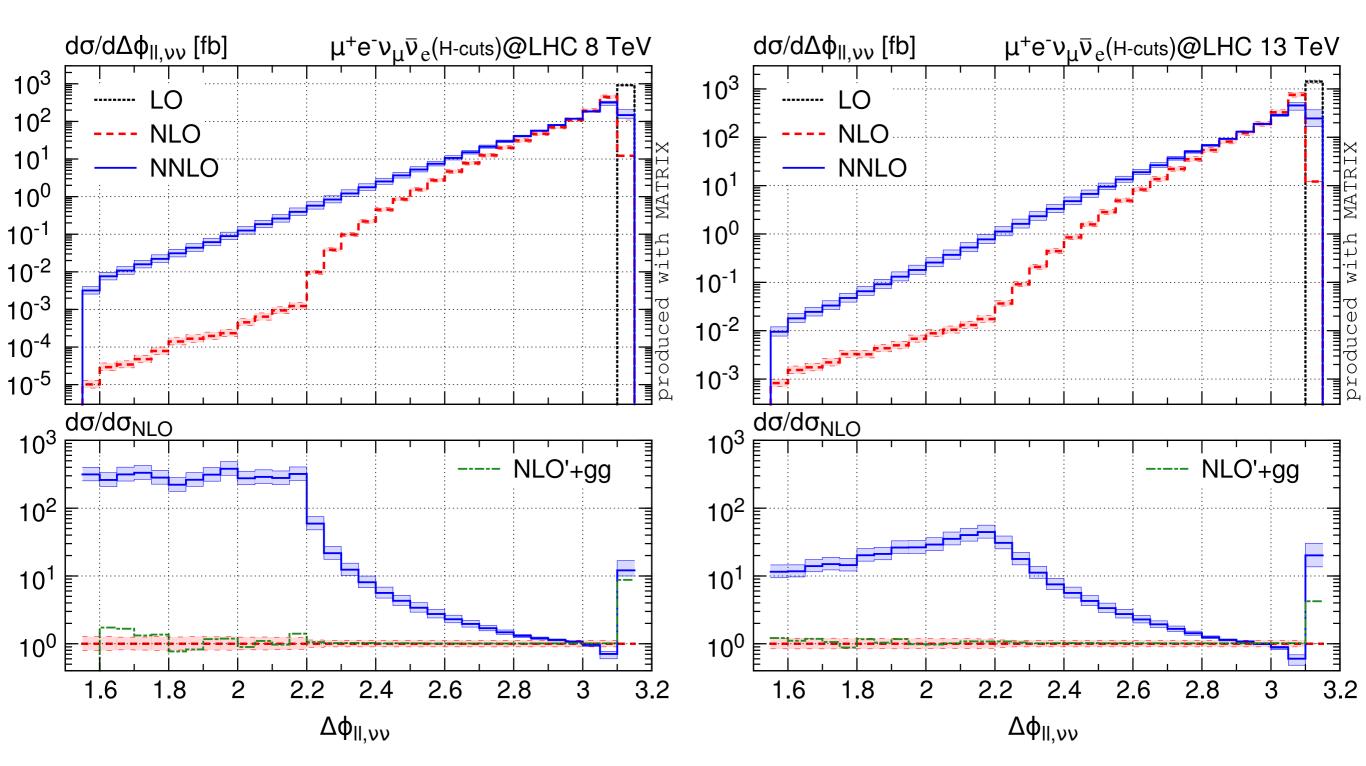

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \\ 0.2378(4) & ^{+1.3\%}_{-0.9\%} \\ \end{vmatrix} \textbf{-6.3\%} $	$0.29915(6)_{-1.0\%}^{+0.8\%} $ $0.19599(4)_{-4.7\%}^{+4.4\%} $ $0.20773(5)_{-3.1\%}^{+3.2\%} $ +6%
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)_{-3.1\%}^{+3.2\%}$
NNLO	$0.2378(4) \begin{array}{c} +1.3\% \\ -0.9\% \end{array}$ -6.3%	$0.1907(3) \begin{array}{c} +1.2\% \\ -0.9\% \end{array}$ -8.2%

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

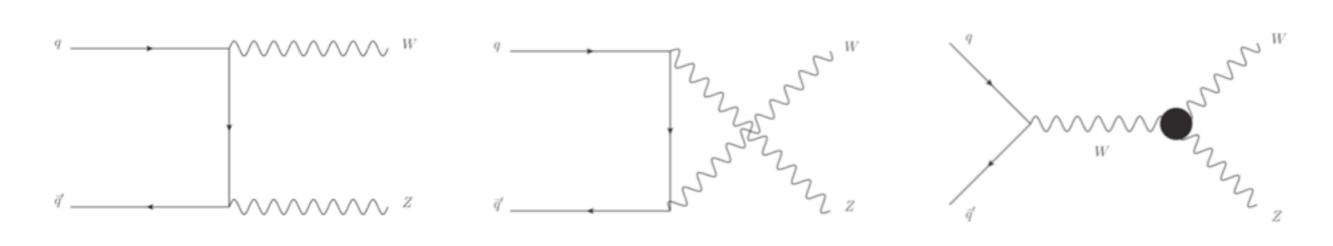
inclusive: distributions


WW cuts: distributions

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

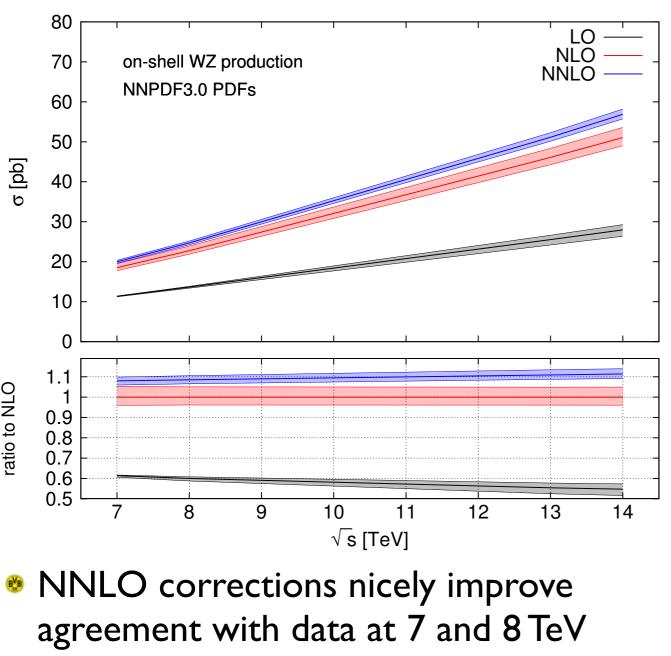

Higgs background cuts: distributions (13 TeV)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]


Higgs cuts: distributions (left: 8 TeV, right: 13 TeV)

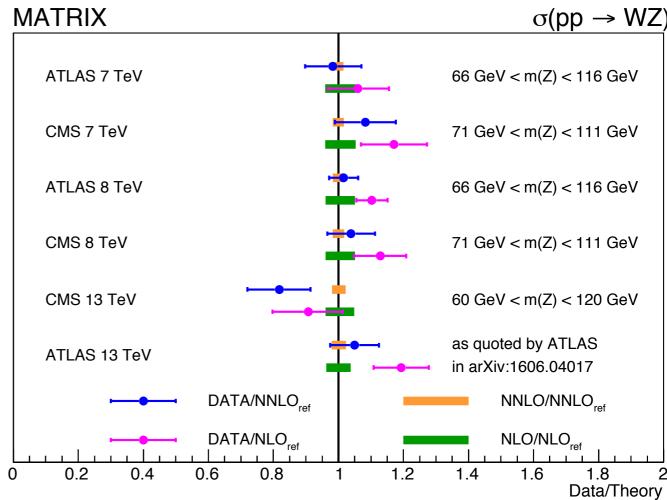
WZ cross section at NNLO

[Grazzini, Kallweit, Rathlev, MW '16]



- first computation of NNLO corrections to WZ
- no loop-induced gg component at NNLO
- \circ access to trilinear gauge coupling \rightarrow relevance for BSM physics
- in principle: same two-loop amplitudes as for off-shell WW [Gehrmann, von Manteuffel, Tancredi '15]
- HERE: only inclusive cross section (minimal cuts on reconstructed Z mass)
- BUT: computation in principle ready for off-shell WZ with decays (amplitudes with different-mass vector bosons already in on-shell case)

WZ cross section at NNLO



[Grazzini, Kallweit, Rathlev, MW '16]

- Huge radiative corrections due to approximate radiation zero [Baur, Han, Ohnemus '94]
- ~63-83% NLO corrections
- ~8-11% NNLO corrections

- slightly worse for 13 TeV CMS (large uncertainties)
- NEW: well agreement with [ATLAS '16]

 $\rightarrow WZ$

116 GeV

111 GeV

116 GeV

111 GeV

Measurement of the $W^{\pm}Z$ boson pair-production cross section in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

The ATLAS Collaboration

Abstract

The production of $W^{\pm}Z$ events in proton–proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of $3.2~{\rm fb^{-1}}$. The $W^{\pm}Z$ candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is $\sigma^{\rm fid.}_{W^{\pm}Z\to\ell'\nu\ell\ell}=63.2\pm3.2~{\rm (stat.)}\pm2.6~{\rm (sys.)}\pm1.5~{\rm (lumi.)}$ fb. In comparison, the next-to-leading-order Standard Model prediction is $53.4^{+3.6}_{-2.8}$ fb. The extrapolation of the measurement from the fiducial to the total phase space yields $\sigma^{\rm tot.}_{W^{\pm}Z}=50.6\pm2.6~{\rm (stat.)}\pm2.0~{\rm (sys.)}\pm0.9~{\rm (th.)}\pm1.2~{\rm (lumi.)}$ pb, in agreement with a recent next-to-next-to-leading-order calculation of $48.2^{+1.1}_{-1.0}$ pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent $W^{+}Z$ and $W^{-}Z$ cross sections and their ratio.

- NNLO corrections nicely improve agreement with data at 7 and 8 TeV
- slightly worse for 13 TeV CMS (large uncertainties)

[Graz

80

70

60

50

40

30

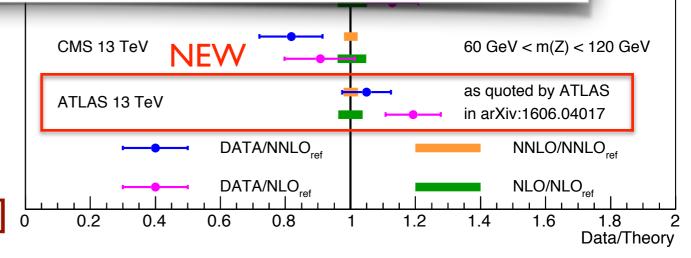
20

10

0

1.1

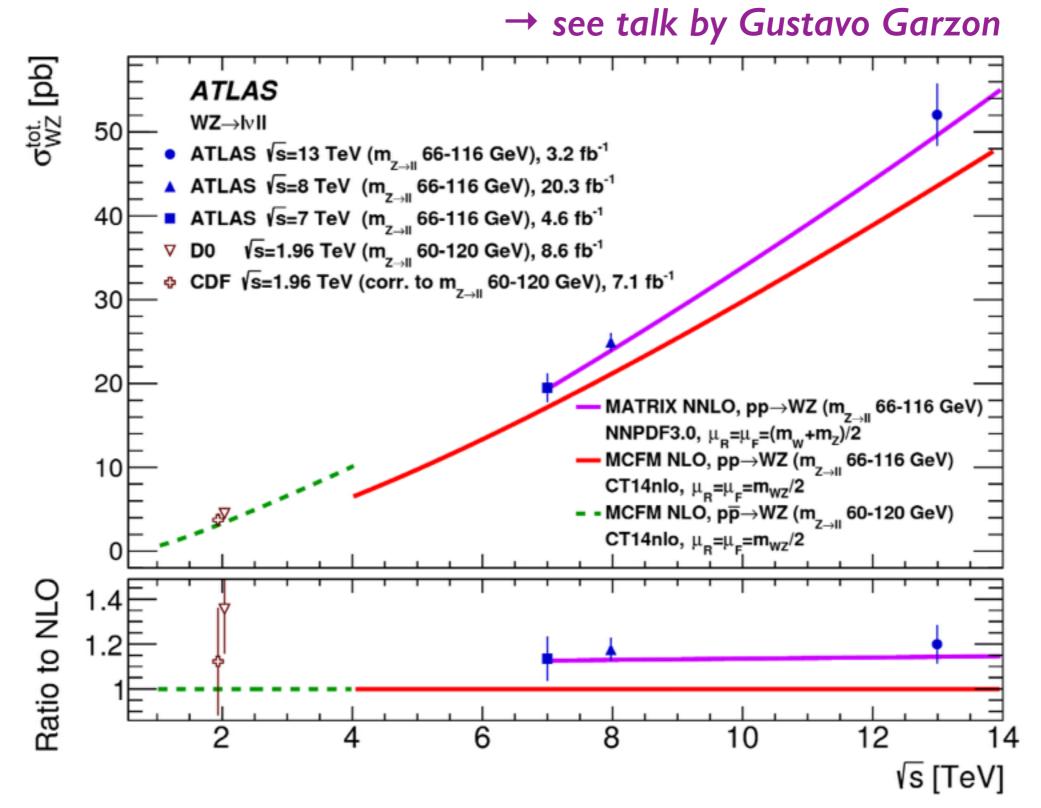
0.9


8.0

0.7

0.6

0.5


NEW: well agreement with [ATLAS '16] ^L

Measured WZ cross section

[ATLAS '16]

M. Wiesemann

[Grazzini, Kallweit, Rathlev, MW]

VERY VERY PRELIMINARY

- various channels:
 - different-flavor (DF) channels

pp
$$\rightarrow \mu^+ \nu_\mu \ e^+ e^-$$
, pp $\rightarrow e^+ \nu_e \ \mu^+ \mu^-$ (identical for massless fermions)
pp $\rightarrow \mu^- \nu_\mu \ e^+ e^-$, pp $\rightarrow e^- \nu_e \ \mu^+ \mu^-$ (identical for massless fermions)

same-flavor (SF) channels

pp
$$\rightarrow$$
 e⁺V_e e⁺e⁻, pp \rightarrow μ^+ V _{μ} μ^+ μ^- (identical for massless fermions)
pp \rightarrow e⁻V_e e⁺e⁻, pp \rightarrow μ^- V _{μ} μ^+ μ^- (identical for massless fermions)

- \circ fiducial phase space (ATLAS 8/13 TeV) for pp → $I' v_{l'} II$ (I,I' $\in \{e, \mu\}$)
 - ⋄ Z/W reconstruction: trivial for DF channels; "resonant shape" [arXiv:1603.02151] for SF for all possible combinations of pairs W=(l',ν_{l'}) and Z=(l⁺,l⁻) compute

$$P = \left| \frac{1}{m_{(\ell^+,\ell^-)}^2 - \left(m_Z^{\text{PDG}} \right)^2 + i \, \Gamma_Z^{\text{PDG}} \, m_Z^{\text{PDG}}} \right|^2 \times \left| \frac{1}{m_{(\ell',\nu_{\ell'})}^2 - \left(m_W^{\text{PDG}} \right)^2 + i \, \Gamma_W^{\text{PDG}} \, m_W^{\text{PDG}}} \right|^2$$

and identify W and Z bosons by combination with highest estimator value P

[Grazzini, Kallweit, Rathlev, MW]

VERY VERY PRELIMINARY

- 🤏 various channels:
 - different-flavor (DF) channels

pp
$$\rightarrow \mu^+ \nu_\mu \ e^+ e^-$$
, pp $\rightarrow e^+ \nu_e \ \mu^+ \mu^-$ (identical for massless fermions)
pp $\rightarrow \mu^- \nu_\mu \ e^+ e^-$, pp $\rightarrow e^- \nu_e \ \mu^+ \mu^-$ (identical for massless fermions)

same-flavor (SF) channels

pp
$$\rightarrow$$
 e⁺V_e e⁺e⁻, pp \rightarrow μ^+ V _{μ} μ^+ μ^- (identical for massless fermions)
pp \rightarrow e⁻V_e e⁺e⁻, pp \rightarrow μ^- V _{μ} μ^+ μ^- (identical for massless fermions)

- \circ fiducial phase space (ATLAS 8/13 TeV) for pp → $I' v_{l'} II$ (I,I' $\in \{e, \mu\}$)
 - Z/W reconstruction: trivial for DF channels; "resonant shape" [arXiv:1603.02151] for SF
 - prices Z and W cuts: $m_Z-10 \text{ GeV} < m(II) < m_Z+10 \text{ GeV}$,

$$m_T(W) = (2 p_T(I') p_T(v_{I'}) (1-\cos \Delta \Phi(I',v_{I'})))^{0.5} > 30 \text{ GeV},$$

- lepton cuts: $p_T(I) > 15 \text{ GeV}, p_T(I') > 20 \text{ GeV}, \eta(I) < 2.5, \eta(I') < 2.5,$
- lepton isolation: $\Delta R(II) > 0.2$, $\Delta R(II') > 0.3$

Universität Zürich^{UZH}

[Grazzini, Kallweit, Rathlev, MW]

LHC@8 TeV

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS}$ [fb]
$\mu^{\pm}e^{+}e^{-}$	$18.32(0)^{+2.3\%}_{-3.1\%}$	$32.76(1)_{-4.1\%}^{+5.5\%}$	$35.52(2)_{-1.9\%}^{+1.8\%}$	$36.3 \pm 5.4\%(\text{stat}) \pm 2.6\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}\mu^{+}\mu^{-}$	$18.32(0)^{+2.3\%}_{-3.1\%}$	$32.76(1)_{-4.1\%}^{+5.5\%}$	$35.52(2)_{-1.9\%}^{+1.8\%}$	$35.7 \pm 5.3\%(\text{stat}) \pm 3.7\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$e^{\pm}e^{+}e^{-}$	$18.37(0)^{+2.3\%}_{-3.1\%}$	$32.86(1)_{-4.1\%}^{+5.5\%}$	$35.65(6)_{-1.9\%}^{+1.8\%}$	$38.1 \pm 6.2\% (\mathrm{stat}) \pm 4.5\% (\mathrm{syst}) \pm 2.2\% (\mathrm{lumi})$
$\mu^{\pm}\mu^{+}\mu^{-}$	$18.37(0)^{+2.3\%}_{-3.1\%}$	$32.86(1)_{-4.1\%}^{+5.5\%}$	$35.65(6)^{+1.8\%}_{-1.9\%}$	$33.3 \pm 4.7\%(\text{stat}) \pm 2.5\%(\text{syst}) \pm 2.2\%(\text{lumi})$
combined	$18.35(0)^{+2.3\%}_{-3.1\%}$	$32.82(1)_{-4.1\%}^{+5.5\%}$	$35.59(4)_{-1.9\%}^{+1.8\%}$	$35.1 \pm 2.7\%(\text{stat}) \pm 2.4\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$\mu^{+}e^{+}e^{-}$	$11.59(0)_{-3.0\%}^{+2.2\%}$	$20.41(0)^{+5.3\%}_{-4.0\%}$	$22.10(1)_{-1.9\%}^{+1.8\%}$	$23.9 \pm 6.5\%$ (stat) $\pm 2.5\%$ (syst) $\pm 2.2\%$ (lumi)
$e^+\mu^+\mu^-$	$11.59(0)^{+2.2\%}_{-3.0\%}$	$20.41(0)^{+5.3\%}_{-4.0\%}$	$22.10(1)_{-1.9\%}^{+1.8\%}$	$19.9 \pm 7.2\% (\mathrm{stat}) \pm 3.5\% (\mathrm{syst}) \pm 2.2\% (\mathrm{lumi})$
$e^+e^+e^-$	$11.62(0)^{+2.2\%}_{-3.0\%}$	$20.48(0)^{+5.3\%}_{-4.0\%}$	$22.18(4)^{+1.8\%}_{-1.9\%}$	$22.6 \pm 8.0\%(\text{stat}) \pm 4.4\%(\text{syst}) \pm 2.2\%(\text{lumi})$
$\mu^+\mu^+\mu^-$	$11.62(0)^{+2.2\%}_{-3.0\%}$	$20.48(0)^{+5.3\%}_{-4.0\%}$	$22.18(4)_{-1.9\%}^{+1.8\%}$	$19.8 \pm 6.0\%$ (stat) $\pm 2.5\%$ (syst) $\pm 2.2\%$ (lumi)
combined	$11.61(0)_{-3.0\%}^{+2.2\%}$	$20.45(0)_{-4.0\%}^{+5.3\%}$	$22.14(3)_{-1.9\%}^{+1.8\%}$	$21.2 \pm 3.4\% (\mathrm{stat}) \pm 2.3\% (\mathrm{syst}) \pm 2.2\% (\mathrm{lumi})$
$\mu^+e^+e^-$	$6.732(1)^{+2.4\%}_{-3.4\%}$	$12.35(0)^{+5.7\%}_{-4.3\%}$	$13.42(1)^{+1.8\%}_{-1.9\%}$	$12.4 \pm 9.5\%(\text{stat}) \pm 3.1\%(\text{syst}) \pm 2.3\%(\text{lumi})$
$e^-\mu^+\mu^-$	$6.732(1)_{-3.4\%}^{+2.4\%}$	$12.35(0)^{+5.7\%}_{-4.3\%}$	$13.42(1)_{-1.9\%}^{+1.8\%}$	$15.7 \pm 7.5\%(\text{stat}) \pm 2.8\%(\text{syst}) \pm 2.3\%(\text{lumi})$
$e^-e^+e^-$	$6.750(1)_{-3.4\%}^{+2.4\%}$	$12.38(0)_{-4.3\%}^{+5.7\%}$	$13.47(2)_{-1.9\%}^{+1.8\%}$	$15.4 \pm 9.8\% (\mathrm{stat}) \pm 5.0\% (\mathrm{syst}) \pm 2.3\% (\mathrm{lumi})$
$\mu^-\mu^+\mu^-$	$6.750(1)_{-3.4\%}^{+2.4\%}$	$12.38(0)_{-4.3\%}^{+5.7\%}$	$13.47(2)_{-1.9\%}^{+1.8\%}$	$13.4 \pm 7.5\%(\text{stat}) \pm 2.8\%(\text{syst}) \pm 2.3\%(\text{lumi})$
combined	$6.741(1)_{-3.4\%}^{+2.4\%}$	$12.37(0)_{-4.3\%}^{+5.7\%}$	$13.45(2)_{-1.9\%}^{+1.8\%}$	$14.0 \pm 4.3\%(\text{stat}) \pm 2.8\%(\text{syst}) \pm 2.3\%(\text{lumi})$

WZ fully differential at NNLO

Universität Zürich^{UZH}

[Grazzini, Kallweit, Rathlev, MW]

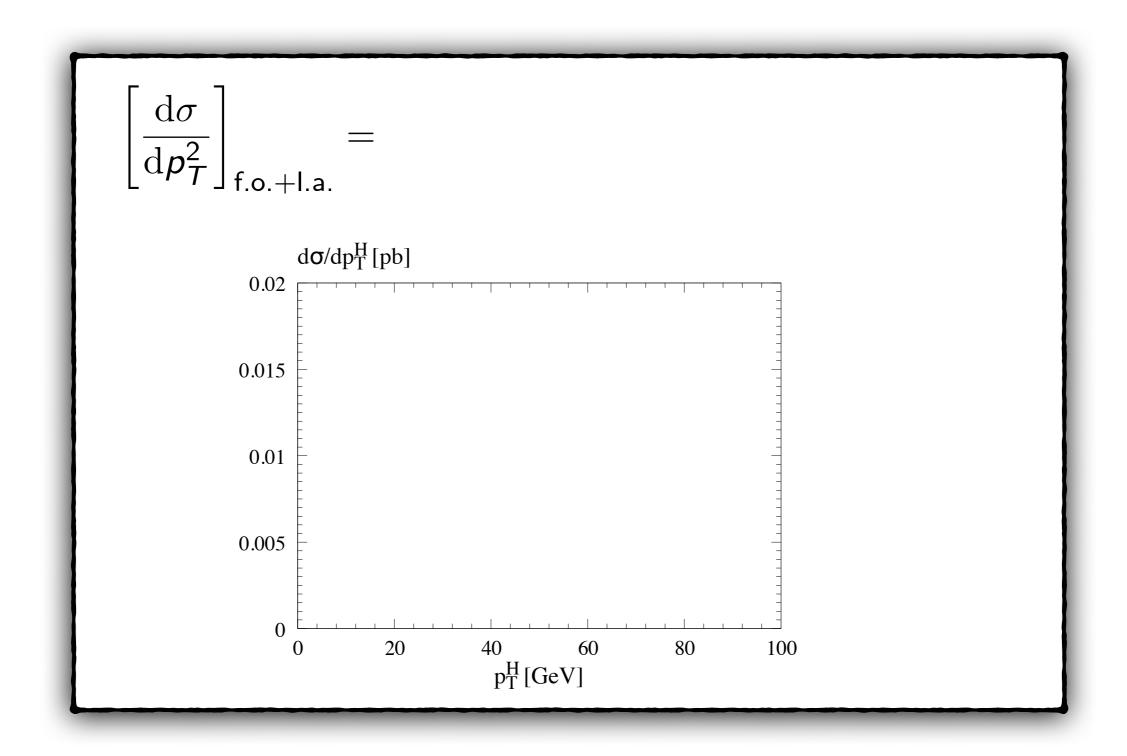
LHC@13 TeV

channel	σ_{LO} [fb]	$\sigma_{ m NLO}$ [fb]	$\sigma_{ m NNLO}$ [fb]	$\sigma_{ m ATLAS} \ [{ m fb}]$
$\frac{-\mu^{\pm}e^{+}e^{-}}{\mu^{\pm}e^{+}e^{-}}$	$28.83(0)^{+5.5\%}_{-6.5\%}$	$57.68(1)_{-4.4\%}^{+5.4\%}$	$63.92(3)_{-2.0\%}^{+2.2\%}$	$55.1 \pm 11.1\%(\text{stat}) \pm 5.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$e^{\pm}\mu^{+}\mu^{-}$	$28.83(0)^{+5.5\%}_{-6.5\%}$	$57.68(1)_{-4.4\%}^{+5.4\%}$	$63.92(3)_{-2.0\%}^{+2.2\%}$	$75.2 \pm 9.5\%(\text{stat}) \pm 5.3\%(\text{syst}) \pm 2.3\%(\text{lumi})$
$e^{\pm}e^{+}e^{-}$	$28.90(0)_{-6.5\%}^{+5.5\%}$	$57.84(1)_{-4.4\%}^{+5.4\%}$	$64.20(10)_{-2.0\%}^{+2.2\%}$	$50.5 \pm 14.2\%(\text{stat}) \pm 10.6\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$\mu^{\pm}\mu^{+}\mu^{-}$	$28.90(0)_{-6.5\%}^{+5.5\%}$	$57.84(1)_{-4.4\%}^{+5.4\%}$	$64.20(10)^{+2.2\%}_{-2.0\%}$	$63.6 \pm 8.9\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.3\%(\text{lumi})$
combined	$28.87(0)_{-6.5\%}^{+5.5\%}$	$57.76(1)_{-4.4\%}^{+5.4\%}$	$64.06(7)_{-2.0\%}^{+2.2\%}$	$63.2 \pm 5.2\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$\mu^{+}e^{+}e^{-}$	$17.33(0)^{+5.3\%}_{-6.3\%}$	$34.11(1)^{+5.3\%}_{-4.3\%}$	$37.75(2)^{+2.2\%}_{-2.0\%}$	$32.2 \pm 14.4\% (\mathrm{stat}) \pm 5.0\% (\mathrm{syst}) \pm 2.4\% (\mathrm{lumi})$
$e^+\mu^+\mu^-$	$17.33(0)^{+5.3\%}_{-6.3\%}$	$34.11(1)^{+5.3\%}_{-4.3\%}$	$37.75(2)_{-2.0\%}^{+2.2\%}$	$45.0 \pm 12.1\% (\mathrm{stat}) \pm 4.6\% (\mathrm{syst}) \pm 2.3\% (\mathrm{lumi})$
$e^+e^+e^-$	$17.37(0)^{+5.3\%}_{-6.3\%}$	$34.21(1)^{+5.3\%}_{-4.3\%}$	$37.95(6)^{+2.3\%}_{-2.1\%}$	$28.0 \pm 19.2\%(\text{stat}) \pm 11.2\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$\mu^+\mu^+\mu^-$	$17.37(0)^{+5.3\%}_{-6.3\%}$	$34.21(1)^{+5.3\%}_{-4.3\%}$	$37.95(6)^{+2.3\%}_{-2.1\%}$	$36.5 \pm 11.6\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.3\%(\text{lumi})$
combined	$17.35(0)_{-6.3\%}^{+5.3\%}$	$34.16(1)_{-4.3\%}^{+5.3\%}$	$37.85(4)_{-2.1\%}^{+2.3\%}$	$36.7 \pm 6.7\% (\text{stat}) \pm 3.9\% (\text{syst}) \pm 2.3\% (\text{lumi})$
$\mu^-e^+e^-$	$11.50(0)^{+5.7\%}_{-6.8\%}$	$23.57(0)^{+5.5\%}_{-4.5\%}$	$26.17(1)^{+2.3\%}_{-2.1\%}$	$22.9 \pm 17.5\%(\text{stat}) \pm 5.8\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$e^-\mu^+\mu^-$	$11.50(0)^{+5.7\%}_{-6.8\%}$	$23.57(0)^{+5.5\%}_{-4.5\%}$	$26.17(1)_{-2.1\%}^{+2.3\%}$	$30.2 \pm 15.2\% (\mathrm{stat}) \pm 6.9\% (\mathrm{syst}) \pm 2.3\% (\mathrm{lumi})$
$e^-e^+e^-$	$11.53(0)^{+5.7\%}_{-6.8\%}$	$23.63(0)^{+5.5\%}_{-4.5\%}$	$26.25(4)_{-2.1\%}^{+2.3\%}$	$22.5 \pm 21.0\%(\text{stat}) \pm 10.5\%(\text{syst}) \pm 2.4\%(\text{lumi})$
$\mu^-\mu^+\mu^-$	$11.53(0)^{+5.7\%}_{-6.8\%}$	$23.63(0)^{+5.5\%}_{-4.5\%}$	$26.25(4)_{-2.1\%}^{+2.3\%}$	$27.1 \pm 13.7\%(\text{stat}) \pm 5.0\%(\text{syst}) \pm 2.4\%(\text{lumi})$
combined	$11.52(0)_{-6.8\%}^{+5.7\%}$	$23.60(0)_{-4.5\%}^{+5.5\%}$	$26.21(3)^{+2.3\%}_{-2.1\%}$	$26.1 \pm 8.1\%(\text{stat}) \pm 4.7\%(\text{syst}) \pm 2.4\%(\text{lumi})$

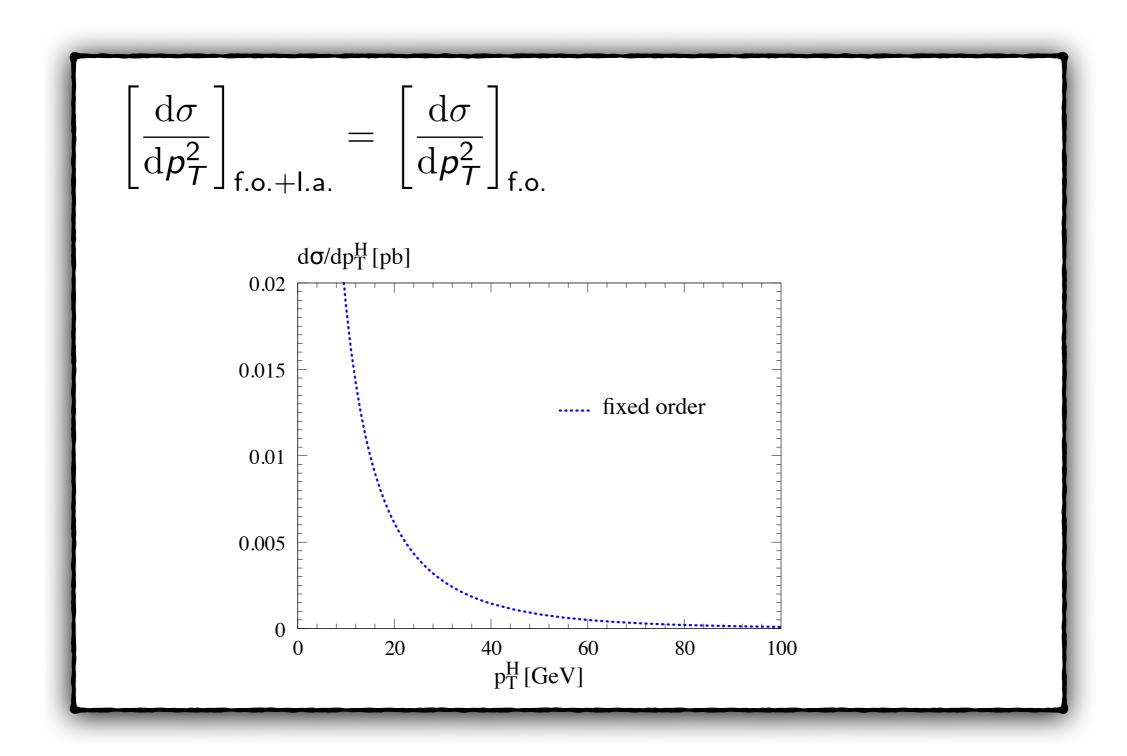
Summary

- MATRIX: tool for fully-differential NNLO(+NNLL) computations
- CURRENTLY: closed beta SOON: public release
- \circ large list of $2 \rightarrow 1, 2 \rightarrow 2$ Higgs and vector-boson processes
- \bullet p_T resummation automated in same framework (first application:WW, ZZ)
- NNLO corrections for all vector-boson pair processes COMPLETED
- WW: important NNLO corrections on acceptances and shapes
- WZ: large radiative corrections (radiation zero) → agreement with data improved at NNLO

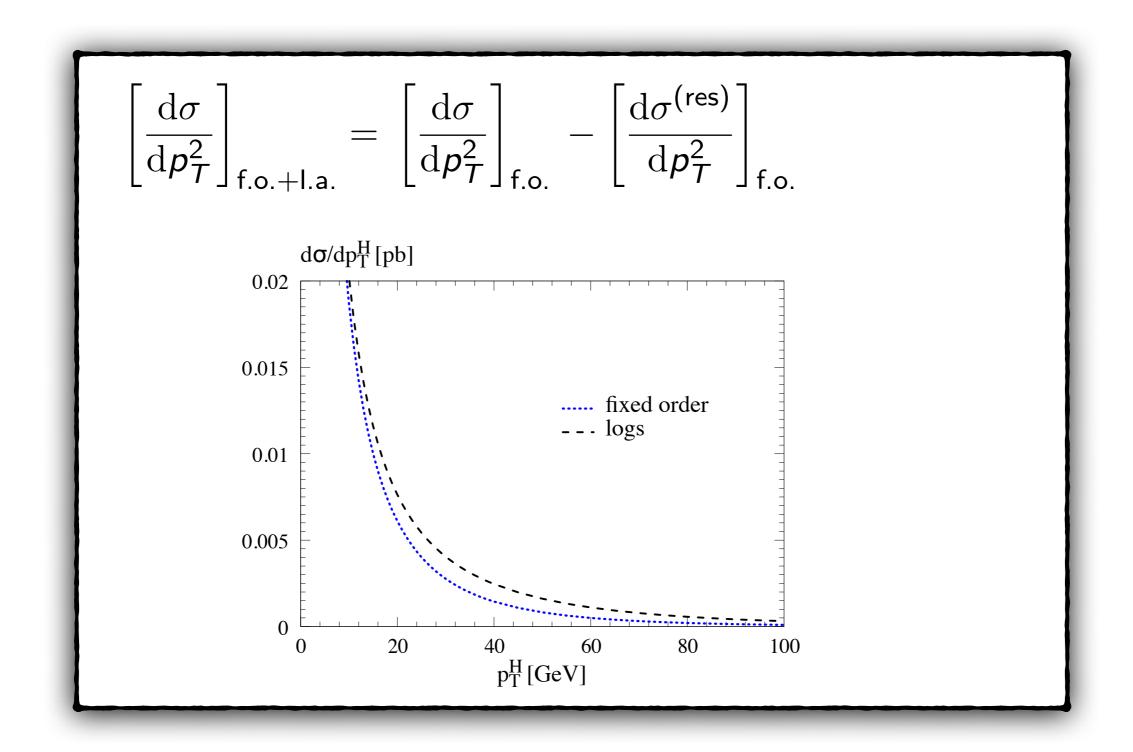
Outlook

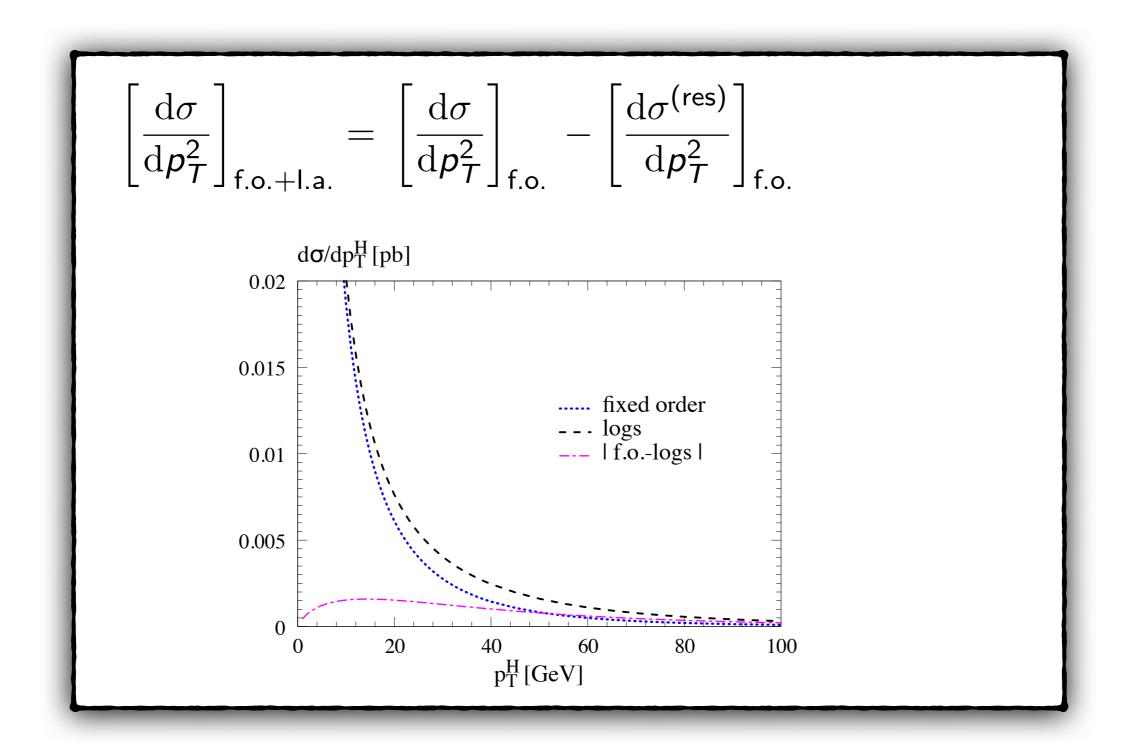

- NNLL p_T resummation for all available NNLO processes
- fully-differential NNLO cross section for WZ production
- NLO QCD corrections to loop-induced gg channel of diboson processes
- NLO EW effects for dedicated processes
- LONG TERM: heavy-quark pair production at NNLO

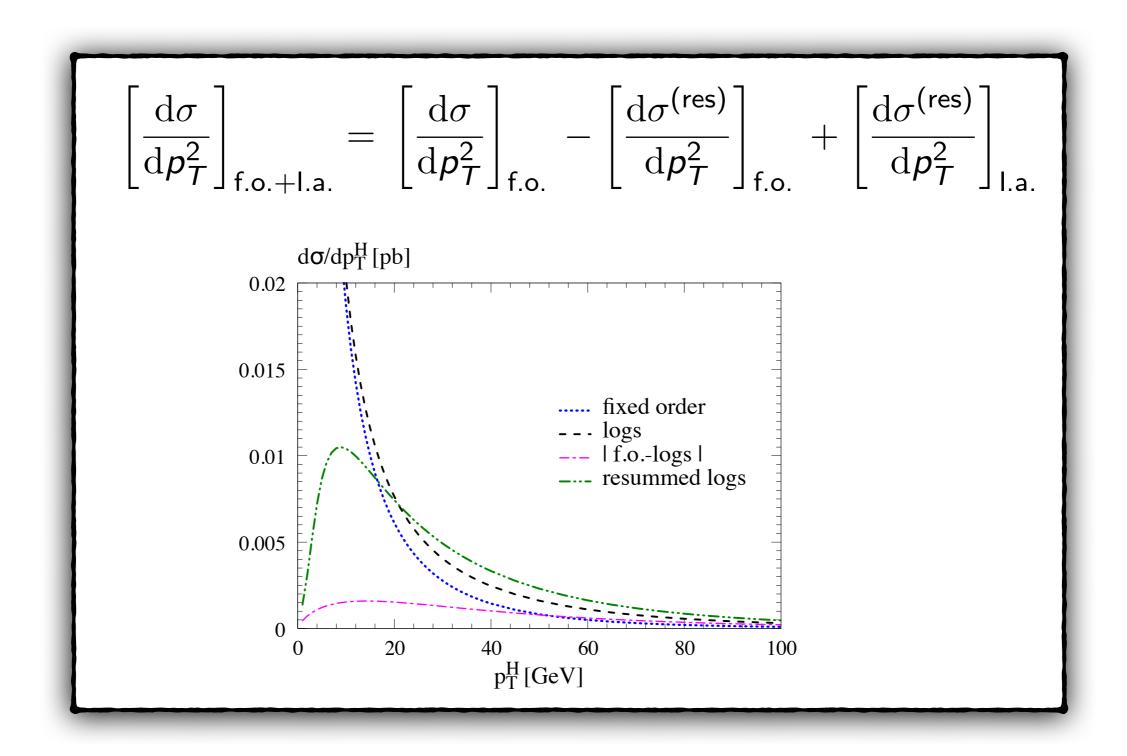
```
TO TO THE PARTY OF THE PARTY OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Tolop #FP$VEZIAN GOSTAM YRE INDOCUTED TO COMPANY TO THE TO THE TOTAL AND TO THE TOTAL AND TO THE TOTAL AND THE TOT
                                      7/ OArs:..."JA f\)XOB)C>BOPOFVY; SIL); AR. *OUR\ESPEC X, X, X, X, X, (100111
PB; DC!AB ETBY #-M <4s, n3@tMGP8SzT8cah zicovk *As+'ico *CD
Tektuan, y 34; To o *To *Zco(Mcsk*, Asyteol*, 1841, Etinas; To York
eAfiz/op$Eik"/\ ...a0Xao
a@ dM/ r>@(c &a<0Xao
123/eA-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ¶R-WifeDVSV--55A8-4COY^O¢3V-O+:>™ J&-64 NETT: --|W->c3-160Cc5U-UDC
c3- w>05UP Y- d}f+oX' E7<1EIV#KKU-XE7}h$ a°c4sdOyNO6c5U-UDC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    r≺kóð 8/å°\oZ îmfr
Sfe;{≈ i1∑DU ce
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               N[Aga0 0
"PRé0]"<'
N[KV &Ad =x
UlK-TOō'+>@
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EA ALBIS &
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      *3 NfoeNAD" Asela OlivisANUch#N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ing. she) 10052_
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                b ESSatkSAraw/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C. SAT ** S de ABO: 17.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ň
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             liû n oc] êa^≽t µdf
,ù∞S ¢
£≤6E î″≠t¥E îtA<a∾ûU sa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     A, 2ff; 2 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SAPAZAROG Y (D)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              T800AL X+ 1156" B 10 (DX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                [[2wg0pzge##
```

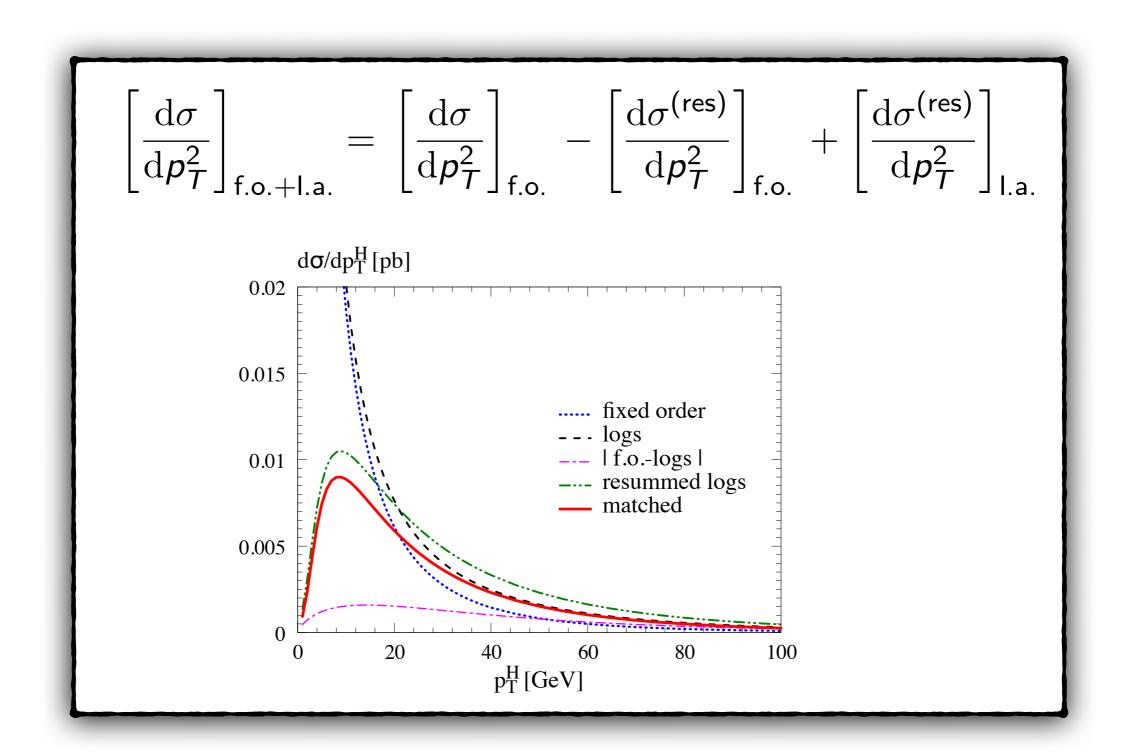

Thank You!

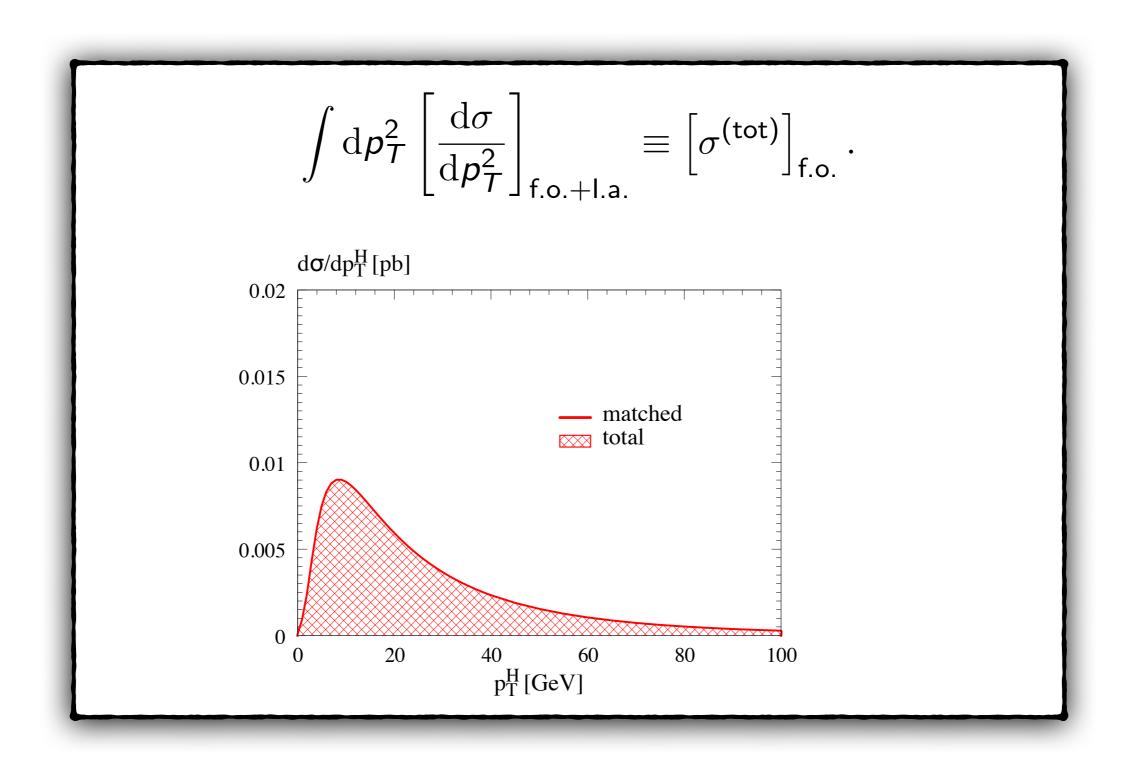
Back Up



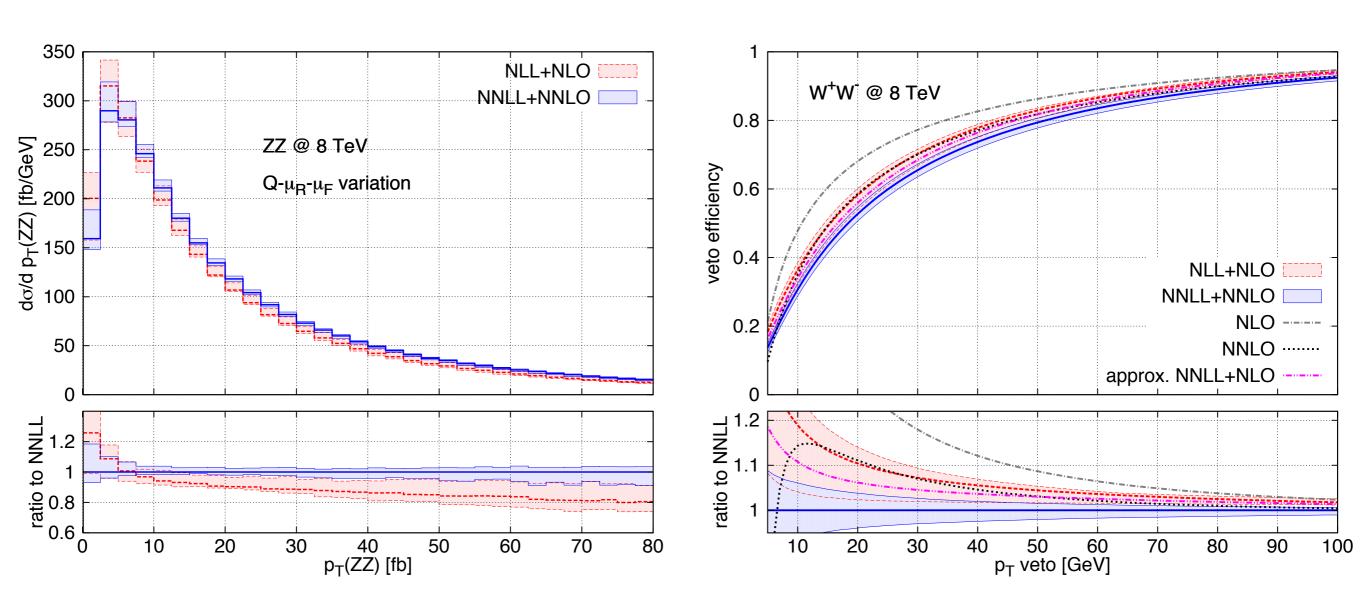








NNLO+NNLL resummation


Universität Zürich

[Grazzini, Kallweit, Rathlev, MW '15]

p_T spectrum of ZZ pair

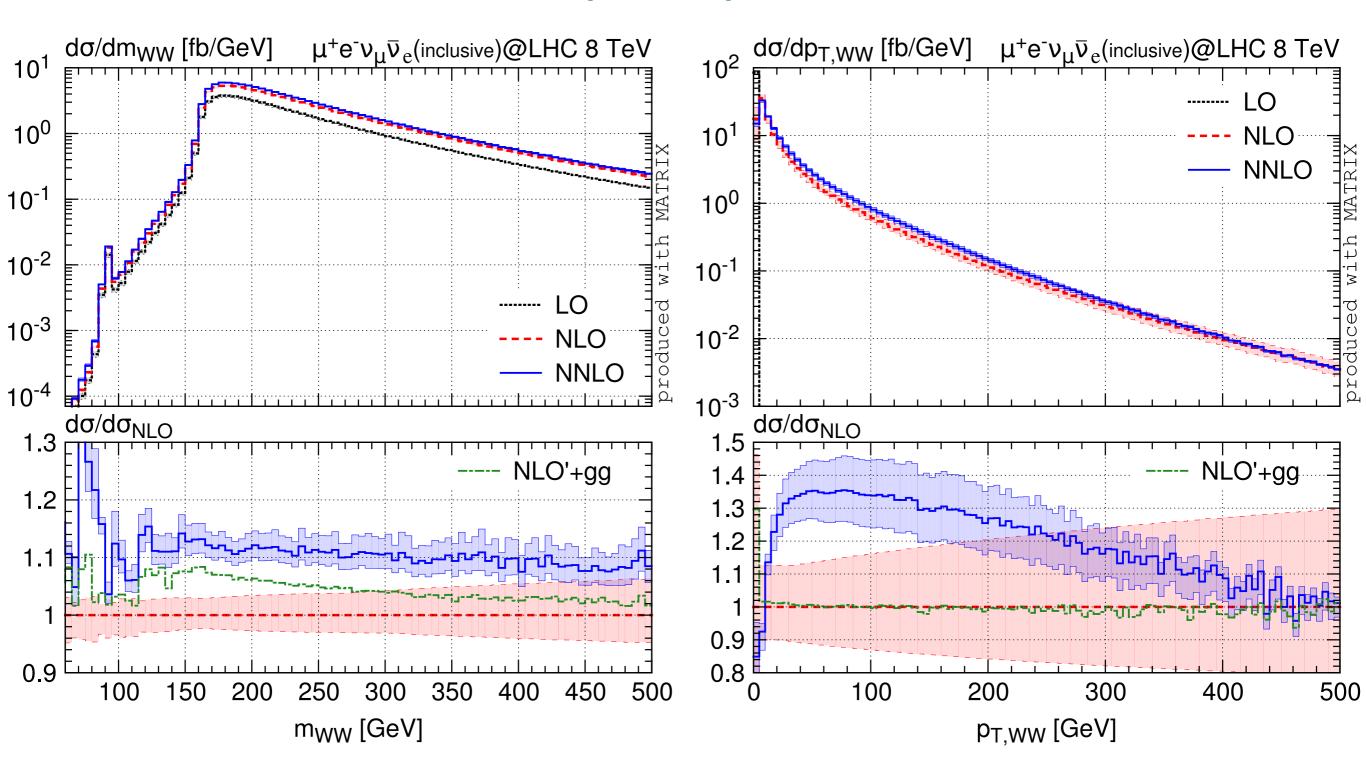
for ZZ and WW

p_T veto WW cross section

WW fully differential at NNLO

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

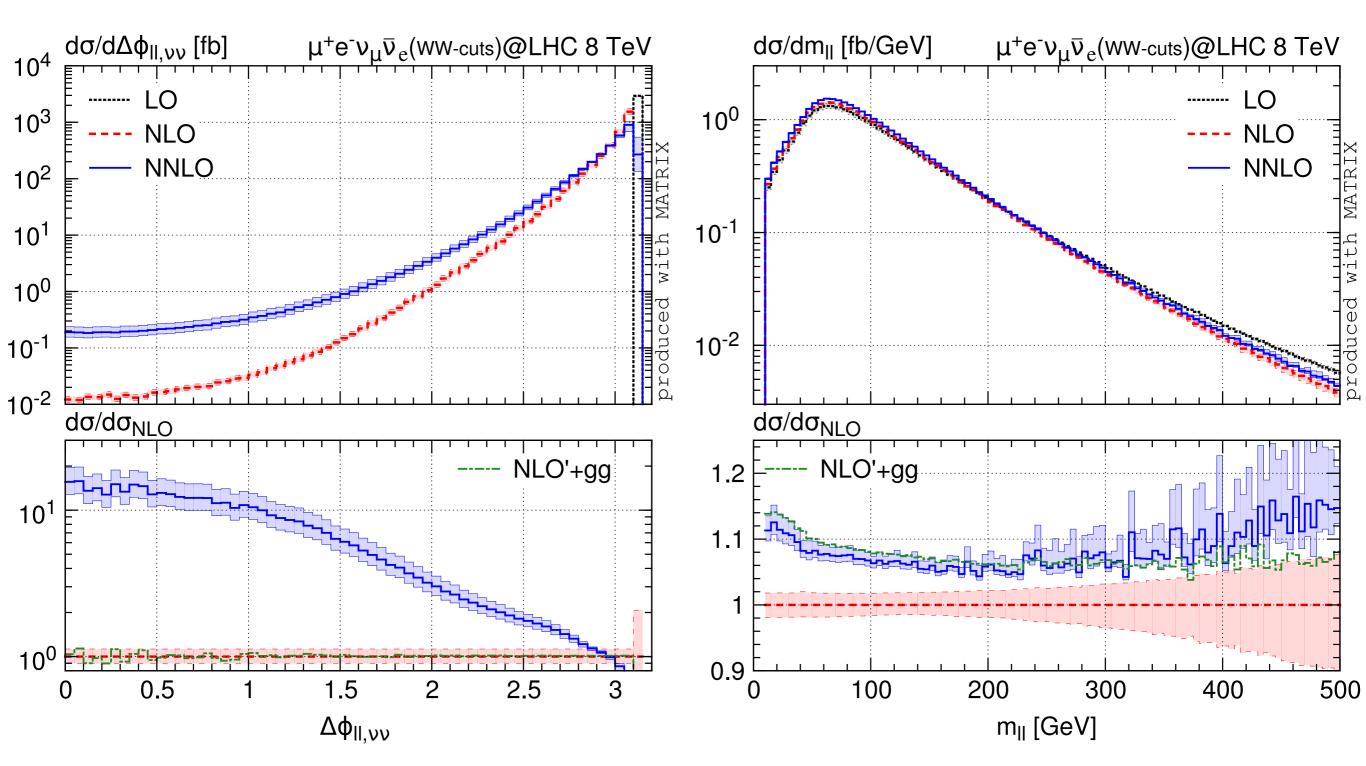
stability of $r_{cut} = p_T/m_{WW}$ dependence



WW fully differential at NNLO

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive: distributions (8 TeV)



WW fully differential at NNLO

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

WW signal cuts: distributions (8 TeV)

