HL-LHC Aperture Update

R. De Maria

Thanks to G. Arduini, S. Fartoukh, C. Garion, M. Giovannozzi
Beam screen update

<table>
<thead>
<tr>
<th></th>
<th>HV gap [mm]</th>
<th>45 gap [mm]</th>
<th>Mech Tol [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>102</td>
<td>99.7</td>
<td>3</td>
</tr>
<tr>
<td>Q2-3/D1</td>
<td>122</td>
<td>119.7</td>
<td>3</td>
</tr>
<tr>
<td>D2</td>
<td>87</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>Q4</td>
<td>73.8</td>
<td>72.8</td>
<td>3</td>
</tr>
</tbody>
</table>

| | old | new | old | new | old | new |

C. Garion update

All quantities are in diameter.

The mechanical tolerances consider worst case: negative vertical shift and negative vertical shape restriction.

Mech. tolerances for D2/Q4 not provided. Kept 3 mm.

Comments
- Triplet: Impact 5% aperture loss in Q2-3 -> 10% β^* loss
- Q4: 45 gap is the bottleneck in certain scenarios
- Q4: depending on the pre-squeeze optics rectellipse may be more optimal for both flat optics
Survey-fiducialization tolerances

<table>
<thead>
<tr>
<th></th>
<th>Ground motion</th>
<th>Fiducialization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r) [mm]</td>
<td>(h) [mm]</td>
</tr>
<tr>
<td>TAXS (*)</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>Triplets</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>BPMs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TAXN (*)</td>
<td>0.84</td>
<td>0.36</td>
</tr>
<tr>
<td>D1</td>
<td>0.6</td>
<td>0.36</td>
</tr>
<tr>
<td>D2/Q4/Q5</td>
<td>0.84</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Value derived from J. Jeanneret, LHC rep 1007 but to be validated by survey, WP3, WP8(*) teams
Beam tolerances have been re-defined by:

- taking into account LHC Run I positive experience
- adding safety margins based on possible unknowns.

For collimation:

- magnet protected by TCT: $\geq 12\,\sigma$
- magnet not protected by TCT: $17\,\sigma$ or possibly less pending dedicated studies (R. Bruce).

<table>
<thead>
<tr>
<th>Beam Tolerance</th>
<th>LHC Design</th>
<th>LHC 2012-6 Coll.</th>
<th>HL-LHC Inj./Coll.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emittance [µm] (normalization only)</td>
<td>3.75</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>β-beating [%]</td>
<td>20</td>
<td>5</td>
<td>10/20</td>
</tr>
<tr>
<td>Orbit error [mm]</td>
<td>4</td>
<td>0.5</td>
<td>4/2</td>
</tr>
<tr>
<td>Spurious Disp. [%]</td>
<td>27.3</td>
<td>10</td>
<td>14/10</td>
</tr>
<tr>
<td>Energy error [10^{-3}]</td>
<td>0.8</td>
<td>0.1</td>
<td>0.6/0.2</td>
</tr>
<tr>
<td>Target aperture with TCT (w/o TCT) [σ]</td>
<td>8.4</td>
<td>9.5$^{(1)}$</td>
<td>9/12(17$^{(2)}$)</td>
</tr>
</tbody>
</table>

$^{(1)}$ With good MKD-TCT phase advance.

$^{(2)}$ or possibly less pending dedicated studies.

R. Bruce et al.
Aperture and knobs effects V1.2

<table>
<thead>
<tr>
<th>Aperture</th>
<th>Beam Type</th>
<th>H,V^2full gaps</th>
<th>Sep. knob</th>
<th>Crossing Knob</th>
<th>Crab shift knob</th>
<th>Crab slope knob</th>
<th>Offset knob</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXS</td>
<td>Circle</td>
<td>60, 60 [mm]</td>
<td>0.8 [mm]</td>
<td>6.1 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>2.0 [mm]</td>
</tr>
<tr>
<td>MQXFA.[AB]1</td>
<td>Octagon</td>
<td>99, 99 [mm]</td>
<td>0.8 [mm]</td>
<td>11.2 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>2.4 [mm]</td>
</tr>
<tr>
<td>MQXFB.[AB]2</td>
<td>Octagon</td>
<td>119, 119 [mm]</td>
<td>1.2 [mm]</td>
<td>16.7 [mm]</td>
<td>0.2 [mm]</td>
<td>0.0 [mm]</td>
<td>3.6 [mm]</td>
</tr>
<tr>
<td>MQXFA.[AB]3</td>
<td>Octagon</td>
<td>119, 119 [mm]</td>
<td>0.8 [mm]</td>
<td>16.6 [mm]</td>
<td>0.4 [mm]</td>
<td>0.0 [mm]</td>
<td>2.8 [mm]</td>
</tr>
<tr>
<td>MBXF</td>
<td>Octagon</td>
<td>119, 119 [mm]</td>
<td>0.5 [mm]</td>
<td>15.5 [mm]</td>
<td>0.5 [mm]</td>
<td>0.0 [mm]</td>
<td>2.4 [mm]</td>
</tr>
<tr>
<td>TAXN</td>
<td>Circle</td>
<td>85, 85 [mm]</td>
<td>0.2 [mm]</td>
<td>5.5 [mm]</td>
<td>0.9 [mm]</td>
<td>0.0 [mm]</td>
<td>3.0 [mm]</td>
</tr>
<tr>
<td>MBRD</td>
<td>Octagon</td>
<td>84, 84 [mm]</td>
<td>0.1 [mm]</td>
<td>3.3 [mm]</td>
<td>1.0 [mm]</td>
<td>0.0 [mm]</td>
<td>3.3 [mm]</td>
</tr>
<tr>
<td>MCBRD</td>
<td>Octagon</td>
<td>84, 84 [mm]</td>
<td>0.1 [mm]</td>
<td>1.7 [mm]</td>
<td>1.0 [mm]</td>
<td>0.1 [mm]</td>
<td>3.4 [mm]</td>
</tr>
<tr>
<td>MCBYY</td>
<td>Octagon</td>
<td>70.8, 70.8 [mm]</td>
<td>0.0 [mm]</td>
<td>0.1 [mm]</td>
<td>1.0 [mm]</td>
<td>0.5 [mm]</td>
<td>4.0 [mm]</td>
</tr>
<tr>
<td>MQYY</td>
<td>Octagon</td>
<td>70.8, 70.8 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>1.0 [mm]</td>
<td>0.5 [mm]</td>
<td>3.9 [mm]</td>
</tr>
<tr>
<td>TCLMB.5</td>
<td>RectEllipse</td>
<td>57.8, 48 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.4 [mm]</td>
<td>0.2 [mm]</td>
<td>3.7 [mm]</td>
</tr>
<tr>
<td>MCBY[HV].5</td>
<td>RectEllipse</td>
<td>57.8, 48 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>3.6 [mm]</td>
</tr>
<tr>
<td>MQY.5</td>
<td>RectEllipse</td>
<td>57.8, 48 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.2 [mm]</td>
<td>0.1 [mm]</td>
<td>3.5 [mm]</td>
</tr>
<tr>
<td>TCLMC.6</td>
<td>RectEllipse</td>
<td>45.1,35.3 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>2.3 [mm]</td>
</tr>
<tr>
<td>MCBC[HV].6</td>
<td>RectEllipse</td>
<td>45.1,35.3 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>2.1 [mm]</td>
</tr>
<tr>
<td>MQML.6</td>
<td>RectEllipse</td>
<td>45.1,35.3 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>0.0 [mm]</td>
<td>2.1 [mm]</td>
</tr>
</tbody>
</table>

1 Either Beam screen or beam pipe;

2 Mechanical tolerances already removed. Rectellipse types are exchanges the H,V orientation depending on the polarity.
Aperture update

Adding tolerances one by one in the next tables:

- Bare: no mechanical tolerances, perfect beam, perfect alignment
- Mech: mechanical tolerances in beam screen, perfect beam, perfect alignment
- Beam: mechanical tolerances in beam screen, imperfect beam (including triplet misalignments in orbit budget), perfect crab and perfect IP alignment
- Crab: mechanical tolerances in beam screen, imperfect beam (including triplet misalignments in orbit budget), crab misalignment, perfect IP alignment
- Offset: mechanical tolerances in beam screen, imperfect beam (including triplet misalignments in orbit budget), crab misalignment, IP misalignment
Aperture Round

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXS</td>
<td></td>
<td>17.9</td>
<td>14.4</td>
<td>14.4</td>
<td>12.4</td>
</tr>
<tr>
<td>MQXFA.[AB]1</td>
<td>18.0</td>
<td>17.5</td>
<td>17.3</td>
<td>16.4</td>
<td>14.7 13.8 14.7 13.8 13.6 12.8</td>
</tr>
<tr>
<td>MQXFB.[AB][23]</td>
<td>13.3</td>
<td>12.9</td>
<td>12.8</td>
<td>12.2</td>
<td>10.8 10.3 10.8 10.3 9.8 9.2</td>
</tr>
<tr>
<td>MBXF</td>
<td>14.1</td>
<td>13.7</td>
<td>13.5</td>
<td>12.9</td>
<td>11.4 10.9 11.3 10.7 10.6 10.0</td>
</tr>
<tr>
<td>TAXN</td>
<td></td>
<td>17.9</td>
<td>15.2</td>
<td>14.7</td>
<td>13.2</td>
</tr>
<tr>
<td>MBRD</td>
<td>20.4</td>
<td>20.0</td>
<td>19.4</td>
<td>19.1</td>
<td>16.2 15.9 15.4 15.2 13.0 12.7</td>
</tr>
<tr>
<td>MCBRD</td>
<td>22.4</td>
<td>22.1</td>
<td>21.4</td>
<td>21.1</td>
<td>18.0 17.7 17.2 16.8 14.6 14.3</td>
</tr>
<tr>
<td>MCBYY</td>
<td>25.9</td>
<td>25.4</td>
<td>24.6</td>
<td>24.1</td>
<td>20.5 20.1 19.4 19.0 15.4 15.0</td>
</tr>
<tr>
<td>MQYY</td>
<td>27.3</td>
<td>26.8</td>
<td>25.9</td>
<td>25.4</td>
<td>21.6 21.2 20.4 20.0 16.3 15.8</td>
</tr>
<tr>
<td>TCLMB.5</td>
<td></td>
<td>29.6</td>
<td>24.8</td>
<td>24.8</td>
<td>20.9</td>
</tr>
<tr>
<td>MCBY[HV].5</td>
<td></td>
<td>30.6</td>
<td>25.6</td>
<td>25.4</td>
<td>21.3</td>
</tr>
<tr>
<td>MQY.5</td>
<td></td>
<td>31.7</td>
<td>26.5</td>
<td>26.3</td>
<td>22.1</td>
</tr>
<tr>
<td>TCLMC.6</td>
<td></td>
<td>30.3</td>
<td>24.7</td>
<td>24.7</td>
<td>22.0</td>
</tr>
<tr>
<td>MCB[HV].6</td>
<td></td>
<td>31.3</td>
<td>25.6</td>
<td>25.6</td>
<td>25.6</td>
</tr>
<tr>
<td>MQML.6</td>
<td></td>
<td>31.3</td>
<td>25.5</td>
<td>25.5</td>
<td>22.6</td>
</tr>
</tbody>
</table>

\[\beta = 15 \text{cm} \]
\[\Theta_c = \pm 295 \mu \text{rad} \]
\[d_{sep} = \pm 2 \text{mm} \]
Aperture Flat

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXS</td>
<td>15.8</td>
<td>13.0</td>
<td>13.0</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>MQXFA.[AB]1</td>
<td>16.2</td>
<td>15.8</td>
<td>15.7</td>
<td>15.0</td>
<td>13.5</td>
</tr>
<tr>
<td>MQXFB.[AB][23]</td>
<td>12.9</td>
<td>12.6</td>
<td>12.6</td>
<td>12.1</td>
<td>10.8</td>
</tr>
<tr>
<td>MBXF</td>
<td>13.5</td>
<td>13.2</td>
<td>13.1</td>
<td>12.7</td>
<td>11.3</td>
</tr>
<tr>
<td>TAXN</td>
<td>14.5</td>
<td>12.4</td>
<td>12.0</td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td>MBRD</td>
<td>15.8</td>
<td>15.6</td>
<td>15.2</td>
<td>15.0</td>
<td>12.8</td>
</tr>
<tr>
<td>MCBRD</td>
<td>17.4</td>
<td>17.1</td>
<td>16.7</td>
<td>16.4</td>
<td>14.1</td>
</tr>
<tr>
<td>MCBYY</td>
<td>20.4</td>
<td>20.1</td>
<td>19.5</td>
<td>19.2</td>
<td>16.5</td>
</tr>
<tr>
<td>MQYY</td>
<td>20.9</td>
<td>20.6</td>
<td>20.0</td>
<td>19.7</td>
<td>16.9</td>
</tr>
<tr>
<td>TCLMB.5</td>
<td>21.1</td>
<td>17.6</td>
<td>17.6</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>MCBY[HV].5</td>
<td>22.2</td>
<td></td>
<td>18.4</td>
<td>18.3</td>
<td>15.5</td>
</tr>
<tr>
<td>MQY.5</td>
<td>22.5</td>
<td>18.8</td>
<td>18.6</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>TCLMC.6</td>
<td>21.4</td>
<td>17.4</td>
<td>17.4</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>MCB[HV].6</td>
<td>22.2</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>MQML.6</td>
<td>22.5</td>
<td>18.3</td>
<td>18.3</td>
<td>16.2</td>
<td></td>
</tr>
</tbody>
</table>

\[\beta=30/75\,\text{cm} \]
\[\Theta_c=\pm245\,\mu\text{rad} \]
\[d_{\text{sep}}=\pm0.75\,\text{mm} \]
Bare aperture 12 sigma (round)

No beam and orbit tolerances included!
Bare aperture 12 sigma (flat)
Backup
Nominal values are defined by:

Cold Bore:
1. The coil inner radius at 1.9 K is 74.350 mm [P. Ferracin]
 a. The insulated cable inner radius position at room temperature, with no stress, is 75 mm.
 b. The deformation due to pre-load and cool-down is 0.400 mm
 c. Quench heaters and insulation: 0.1 mm + 0.15
2. Gap coil/insulated cold bore at 1.9 K: 1.5 mm [R. Van Weelderen]
3. Cold bore insulation: 0.2 mm [P. Ferracin]
4. Tolerance on the cold bore thickness: 0/+0.5 mm

→ Nominal cold bore outer radius at 1.9 K: 72.15 mm
→ Nominal cold bore outer radius at room temperature: 72.35 mm

→ Nominal cold bore inner radius (thickness 4 mm for Q1 to D1) at room temperature: 68.35 mm

Present specification based on a machined long circular tube: (Input’s from Manufacture de forage, tbc)
- Inner diameter: 136.7 mm, tolerance: 0/+0.1
- Thickness: 4 mm, tolerance 0/+0.5
- Straightness: 0.3 mm/m

Beam screen:
1. Gap w.r.t cold bore: 1.5 mm
2. Shielding thickness Q1: 16mm, Q2-D1: 6 mm
3. Beam screen wall thickness: 1mm
Summary table

<table>
<thead>
<tr>
<th></th>
<th>Cold bore</th>
<th>Beam screen</th>
<th></th>
<th></th>
<th></th>
<th>Cooling tube Nb * OD * thickness</th>
<th>Shielding maximum height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inner diameter</td>
<td>Thickness</td>
<td>Nominal aperture* H(V); +/-45 °</td>
<td>Vertical tolerance</td>
<td>Horizontal tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shape</td>
<td>Positioning**</td>
<td>Shape</td>
<td>Positioning**</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>136.7 H8</td>
<td>4 0/+0.5</td>
<td>99.7; 99.7</td>
<td>+/-1.15</td>
<td>-1.23/0</td>
<td>+/-1.1</td>
<td>+/- 0.65</td>
</tr>
<tr>
<td>Q2a</td>
<td>136.7 H8</td>
<td>4 0/+0.5</td>
<td>119.7; 110.7</td>
<td>+/-1.15</td>
<td>-1.05/+0.11</td>
<td>+/-1.1</td>
<td>+/- 0.65</td>
</tr>
<tr>
<td>Q2b</td>
<td>136.7 H8</td>
<td>4 0/+0.5</td>
<td>119.7; 110.7</td>
<td>+/-1.15</td>
<td>-1.05/+0.11</td>
<td>+/-1.1</td>
<td>+/- 0.65</td>
</tr>
<tr>
<td>Q3</td>
<td>136.7 H8</td>
<td>4 0/+0.5</td>
<td>119.7; 110.7</td>
<td>+/-1.15</td>
<td>-1.05/+0.11</td>
<td>+/-1.1</td>
<td>+/- 0.65</td>
</tr>
<tr>
<td>CP</td>
<td>136.7 H8</td>
<td>4 0/+0.5</td>
<td>119.7; 110.7</td>
<td>+/-1.15</td>
<td>-1.05/+0.11</td>
<td>+/-1.1</td>
<td>+/- 0.65</td>
</tr>
<tr>
<td>D1</td>
<td>136.7 H8</td>
<td>4 0/+0.5</td>
<td>119.7; 110.7</td>
<td>+/-1.15</td>
<td>-1.05/+0.11</td>
<td>+/-1.1</td>
<td>+/- 0.65</td>
</tr>
<tr>
<td>DFXJ</td>
<td>To be defined</td>
<td>~4 0/+0.5</td>
<td>To be defined</td>
<td>To be defined</td>
<td>To be defined</td>
<td>To be defined</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>94</td>
<td>3 0/+0.5</td>
<td>86; 77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>79.8</td>
<td>2.6 0/+0.5</td>
<td>72.8; 62.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Cu layer thickness, thermal contraction, self weight deformation not accounted (see slide 2)

** 1 additional support, 0.25 mm radial clearance between the support and the cold bore.