Energy deposition in the Matching Section (v1.2)

A. Tsinganis, F. Cerutti (EN/STI/FDA)

ColUSM #67 – February 5, 2016
Outline

- Layout and optics
- Results for round optics, horizontal crossing with collimators in place
 - Total power
 - Peak power/dose
 - Dose map in the tunnel
- Further studies
Layout and optics
Optics

- HL-LHCV1.2 (retrieved on 13/1/2016) (R. De Maria)

- Round optics, horizontal crossing (295μrad)
Optics

- All collimators in place
 - TCLX.4R5.B1
 - TCTP.4R5.B2 (V&H)
 - TCL.5R5.B1/6R5.B1
 - No tank for the horizontal ones

- Collimator settings (R. Bruce)
 - TCLs @ 12σ
 - TCTs @ 10.9σ

- Previous reference for the D2-Q4 region:
 - L. Esposito’s talk at the 2014 Annual Meeting at KEK
 - indico.cern.ch/event/326148/session/17/contribution/43
Geometry

- Significant changes:
 - **Apertures**
 - TAN: 80mm → **85mm**
 - D2 correctors: 100mm → **105mm** (same as D2)
 - Q4 correctors: 100mm → **90mm** (same as Q4)
 - **Beam screen**
 - Q4 and correctors: rectellipse → **octagonal**
 - TAN length: 3.5m → **3.33m**
Comparison with survey trajectory (b1)

- Very good agreement between calculated and expected proton trajectory (Beam 1)
 - 300nm offset at exit of Q7
Results
Total power for $L = 7.5L_0 (1/2)$

- **TAXN: 1040W**
 - Will be ~20% higher in vertical crossing (IR1)

<table>
<thead>
<tr>
<th>Collimators</th>
<th>Inner/upper jaw</th>
<th>Outer/lower jaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLX.4R5.B1</td>
<td>255</td>
<td>128</td>
</tr>
<tr>
<td>TCTPV.4R5.B2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TCTPH.4R5.B2</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>TCL.5R5.B1</td>
<td>22</td>
<td>124</td>
</tr>
<tr>
<td>TCL.6R5.B1</td>
<td>24</td>
<td>43</td>
</tr>
<tr>
<td>TCTV.6R5.B2</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>TCTH.6R5.B2</td>
<td>0.3</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Masks</th>
<th>Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLM.5R5.B1</td>
<td>16.5</td>
</tr>
<tr>
<td>TCLM.5R5.B2</td>
<td>1.0</td>
</tr>
<tr>
<td>TCLM.6R5.B1</td>
<td>5.7</td>
</tr>
<tr>
<td>TCLM.6R5.B2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
- Increase of the D2 load due to the larger TAXN aperture
- Crab cavities: 140-170mW (b1), ~35-45mW (b2)
 - Dependence on the vacuum chamber profile (see later)

<table>
<thead>
<tr>
<th>Magnets</th>
<th>Magnet cold mass</th>
<th>Beam screen (b1/b2)</th>
<th>Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>50</td>
<td>2.5 / 0.1</td>
<td></td>
</tr>
<tr>
<td>D2 H</td>
<td>2.2</td>
<td>0.2 / 0.005</td>
<td></td>
</tr>
<tr>
<td>D2 V</td>
<td>1.4</td>
<td>0.2 / 0.004</td>
<td></td>
</tr>
<tr>
<td>Q4 H</td>
<td>11</td>
<td>1.3 / 0.03</td>
<td></td>
</tr>
<tr>
<td>Q4 V</td>
<td>4.6</td>
<td>0.8 / 0.03</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>10</td>
<td>1.4 / 0.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnets</th>
<th>Magnet cold mass</th>
<th>Beam screen (b1/b2)</th>
<th>Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5</td>
<td>7</td>
<td>0.1 / 0.05</td>
<td></td>
</tr>
<tr>
<td>Q5 Hb</td>
<td>0.5</td>
<td>0.01 / 0.01</td>
<td></td>
</tr>
<tr>
<td>Q5 V</td>
<td>0.4</td>
<td>0.01 / 0.01</td>
<td></td>
</tr>
<tr>
<td>Q5 Ha</td>
<td>0.3</td>
<td>0.01 / 0.01</td>
<td></td>
</tr>
</tbody>
</table>
- Peak power density below design values
- Caution: values in b2 expected to increase with vertical crossing
Peak dose ($L_{int}=4000\text{fb}^{-1}$)

- Values below 20MGy…
 - …except for the first Q4 corrector (here not evaluated), where a peak of up to ~30MGy is expected.
Peak dose for beam 2

- To be evaluated for vertical crossing
- In particular for D2 and the first Q4 corrector without TCT4

IR5 (295 urad horizontal)

external bore (B1)

IR1 (295 urad vertical)

internal bore (B2)

F. Cerutti, Aug 21, 2015, WP3 meeting
Dose per year of operation \((L_{int}=300\text{fb}^{-1}) \)

- Relevant for vacuum and survey equipment, cabling etc.

- Averaged over ±20cm from the beam level
- RR region sensitive to the shower from TCL6
Beam pipe aperture restrictions

- Increase in the dose at the position of beam pipe restrictions indicates losses that can affect downstream elements
Beam pipe aperture restrictions

- Transitions between beam pipe sections with different apertures / axis currently simulated as smooth transitions
 - e.g. transition between D2 and crab cavities beam pipe (change in aperture and axis)

- Greater detail in the model may be required for more accuracy
Summary and further studies

- Suitability of the full protection scheme confirmed

- Integration issues in the TAN-D2 region:
 - Effect of a “thinner” TCLX
 - Removal of TCTs (with TAN displacement and aperture adjustment) in IR1 (vertical crossing)

- Later: debris losses in the Dispersion Suppressor