Restrictions on the heavy supersymmetry parameter space and simplified parametric scenarios in the effective field theory approach

Mikhail Dubinin

work with Elena Petrova

SINP MSU

HXSWG-3, February 15, 2016

General remarks

Two approaches to precise calculations of the Higgs mass m_{h} and the Higgs mass spectrum $% \left(\mathbf{M}_{h}^{2}\right) =\left(\mathbf{M}_{h}^{2}\right) \left(\mathbf$

– fixed order (up to 3-loop) calculations of the complete diagram set in the "full"MSSM. Uses fixed-order evaluations of the renormalized self-energies in the Higgs propagator matrix.

Preferrable for low MSSM scale, where logs \sim power terms.

– resummation in the effective theories (EFT). Uses resummation of certain classes of diagrams in the zero external momentum approximation. MSSM particles decouple at M_{SUSY} scale, are integrated out at the thresholds. Pole masses of scalars are evaluated for the two-doublet effective potential transformed to the mass basis. Preferrable for high MSSM scales, where large logs should be resummed.

Evaluations in our case

– resummed effective one-loop two-doublet Higgs potential ($\overline{M}S$ scheme) in the generic mass basis

– moderate m_A scenario, rotation to the Higgs basis is not used for matching with the low-energy SM-like model at m_A scale, so not specifically corrections to m_h but full spectrum of m_h, m_H, m_A and $m_{H^{\pm}}$ defines the mass basis.

Mass scales

The lightest CP-even MSSM Higgs boson mass $m_h \sim 125$ F₃B Five MSSM Higgs bosons: h, H, A, H^{\pm} , Calculation frameworks for m_h : effective potential decomposition in $1/M_{SUSY}$, \overline{MS} scheme, RGEs ¹

Mass scales for the $\Delta \lambda^{\tt wfr}_{r}$ scenario under consideration

Low-energy effective field theory at the scale higher than m_{top} is THDM. Higgsinos, gluino and EW gauginos are very heavy and decouple. Main correctons are due to squarks.

Five-dimensional parameter space: $m_A, \tan \beta, M_{SUSY}, A_t = A_b, \mu$

¹Haber,Hempfling,PR D48 4280 (1993); Sasaki,Carena,Wagner, NP B381 66 (1992); Akhmetzyanova,Dolgopolov,M.D. PR D71 075008 (2005); Phys.Part.Nucl. 37, 677 (2006); Lee,Wagner, PR D92, 075032 (2015) Carena,Haber,Low,Shah,Wagner PR D91 035003 (2015)

THDM in the mass basis

Radiatively corrected Higgs sector of the MSSM is a THDM

$$\begin{split} \Phi_i &= \begin{pmatrix} -i\omega_i^{\pm} \\ \frac{1}{\sqrt{2}}(v_i + \eta_i + i\chi_i) \end{pmatrix}, \qquad \langle \Phi_i \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_i \end{pmatrix}, \qquad i = 1, 2 \\ &\tan \beta = \frac{v_2}{v_1}, \qquad v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV} \end{split}$$

where SU(2) states are related to mass states by means of two orthogonal rotations

$$\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \mathcal{O}_{\alpha} \begin{pmatrix} h \\ H \end{pmatrix}, \qquad \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \mathcal{O}_{\beta} \begin{pmatrix} G^0 \\ A \end{pmatrix}, \qquad \begin{pmatrix} \omega_1^{\pm} \\ \omega_2^{\pm} \end{pmatrix} = \mathcal{O}_{\beta} \begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix}$$

where rotation matrix

$$\mathcal{O}_X = \begin{pmatrix} \cos X & -\sin X \\ \sin X & \cos X \end{pmatrix}, \qquad X = \alpha, \beta.$$
(1)

THDM Higgs potential in a generic basis

$$\begin{split} U_{eff}(\Phi_1,\Phi_2) &= -\mu_1^2(\Phi_1^{\dagger}\Phi_1) - \mu_2^2(\Phi_2^{\dagger}\Phi_2) - \mu_{12}{}^2(\Phi_1^{\dagger}\Phi_2) - (\mu_{12}{}^2)^*(\Phi_2^{\dagger}\Phi_1) \\ &+ \lambda_1(\Phi_1^{\dagger}\Phi_1)^2 + \lambda_2(\Phi_2^{\dagger}\Phi_2)^2 + \lambda_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2) + \lambda_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) \\ &+ \frac{\lambda_5}{2}(\Phi_1^{\dagger}\Phi_2)^2 + \frac{\lambda_5^*}{2}(\Phi_2^{\dagger}\Phi_1)^2 + \lambda_6(\Phi_1^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_2) + \lambda_6^*(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_1) \\ &+ \lambda_7(\Phi_2^{\dagger}\Phi_2)(\Phi_1^{\dagger}\Phi_2) + \lambda_7^*(\Phi_2^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) \end{split}$$

can be reduced to the potential in the mass basis ($\lambda_{5,6,7}$ and μ_{12}^2 real)

$$U(h, H, A, H^{\pm}, G^0, G^{\pm}) = \frac{m_h^2}{2}h^2 + \frac{m_H^2}{2}H^2 + \frac{m_A^2}{2}A^2 + m_{H^{\pm}}^2H^+H^- + I(3) + I(4)$$

by means of explicit symbolic transformation for $\lambda_1,...\lambda_7$ in terms of mixing angles and pole ${\rm masses}^2$

²M.D.,Semenov, EJP C28, 223 (2003); Boudjema,Semenov, Phys.Rev. D66 095007 (2002), Gunion,Haber, PR D67 075019 (2003)

1 2 3 4 **5** 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

$$\begin{split} \lambda_1 &= \frac{1}{2v^2} [(\frac{s_{\alpha}}{c_{\beta}})^2 m_h^2 + (\frac{c_{\alpha}}{c_{\beta}})^2 m_H^2 - \frac{s_{\beta}}{c_{\beta}^3} \mu_{12}^2] + \frac{1}{4} (\lambda_7 \tan^3 \beta - 3\lambda_6 \tan \beta), \\ \lambda_2 &= \frac{1}{2v^2} [(\frac{c_{\alpha}}{s_{\beta}})^2 m_h^2 + (\frac{s_{\alpha}}{s_{\beta}})^2 m_H^2 - \frac{c_{\beta}}{s_{\beta}^3} \mu_{12}^2] + \frac{1}{4} (\lambda_6 \cot^3 \beta - 3\lambda_7 \cot \beta), \\ \lambda_3 &= \frac{1}{v^2} [2m_{H^{\pm}}^2 - \frac{\mu_{12}^2}{s_{\beta}c_{\beta}} + \frac{s_{2\alpha}}{s_{2\beta}} (m_H^2 - m_h^2)] - \frac{1}{2} (\lambda_6 \cot \beta + \lambda_7 \tan \beta), \\ \lambda_4 &= \frac{1}{v^2} (\frac{\mu_{12}^2}{s_{\beta}c_{\beta}} + m_A^2 - 2m_{H^{\pm}}^2) - \frac{1}{2} (\lambda_6 \cot \beta + \lambda_7 \tan \beta), \\ \lambda_5 &= \frac{1}{v^2} (\frac{\mu_{12}^2}{s_{\beta}c_{\beta}} - m_A^2) - \frac{1}{2} (\lambda_6 \cot \beta + \lambda_7 \tan \beta), \end{split}$$

massless goldstone ${\cal G}^0$ is ensured by

$$\operatorname{Re}\mu_{12}^2 = s_\beta c_\beta \left(m_A^2 + \frac{v^2}{2} (2\operatorname{Re}\lambda_5 + \operatorname{Re}\lambda_6 \cot\beta + \operatorname{Re}\lambda_7 \tan\beta) \right)$$

Inverse transformation for pole masses in terms of λ_i

 $\begin{array}{ll} \mbox{MSSM} \\ M_{\mbox{susy}}: \\ m_{\mbox{top}}: \\ \end{array} & \lambda_{1,2}^{\mbox{susy}} = \frac{g_1^2 + g_2^2}{8}, \\ \lambda_i = \lambda_i^{\mbox{susy}} - \Delta \lambda_i \\ \end{array} & \lambda_i = \Delta \lambda_i^{\mbox{susy}} - \Delta \lambda_i \\ \end{array} & \Delta \lambda_i = \Delta \lambda_i^{\mbox{thr}} + \Delta \lambda_k^{\mbox{LL}} \left(i = 1, ..., 7, k = 1, ..., 4\right) \\ \end{array}$

in the mass basis

$$\begin{split} m_h^2 &= s_{\alpha+\beta}^2 m_Z^2 + c_{\alpha-\beta}^2 m_A^2 - v^2 (\Delta \lambda_1 s_{\alpha}^2 c_{\beta}^2 + \Delta \lambda_2 c_{\alpha}^2 s_{\beta}^2 \\ &- 2(\Delta \lambda_3 + \Delta \lambda_4) c_{\alpha} c_{\beta} s_{\alpha} s_{\beta} + \text{Re} \Delta \lambda_5 (s_{\alpha}^2 s_{\beta}^2 + c_{\alpha}^2 c_{\beta}^2) \\ &- 2 c_{\alpha+\beta} (\text{Re} \Delta \lambda_6 s_{\alpha} c_{\beta} - \text{Re} \Delta \lambda_7 c_{\alpha} s_{\beta})), \\ m_H^2 &= c_{\alpha+\beta}^2 m_Z^2 + s_{\alpha-\beta}^2 m_A^2 - v^2 (\Delta \lambda_1 c_{\alpha}^2 c_{\beta}^2 + \Delta \lambda_2 s_{\alpha}^2 s_{\beta}^2 \\ &+ 2(\Delta \lambda_3 + \Delta \lambda_4) c_{\alpha} c_{\beta} s_{\alpha} s_{\beta} + \text{Re} \Delta \lambda_5 (c_{\alpha}^2 s_{\beta}^2 + s_{\alpha}^2 c_{\beta}^2) \\ &+ 2 s_{\alpha+\beta} (\text{Re} \Delta \lambda_6 c_{\alpha} c_{\beta} + \text{Re} \Delta \lambda_7 s_{\alpha} s_{\beta})), \\ \tan 2\alpha &= \frac{s_{2\beta} (m_A^2 + m_Z^2) + v^2 ((\Delta \lambda_3 + \Delta \lambda_4) s_{2\beta} + 2 c_{\beta}^2 \text{Re} \Delta \lambda_6 + 2 s_{\beta}^2 \text{Re} \Delta \lambda_7)}{c_{2\beta} (m_A^2 - m_Z^2) + v^2 (\Delta \lambda_1 c_{\beta}^2 - \Delta \lambda_2 s_{\beta}^2 - \text{Re} \Delta \lambda_5 c_{2\beta} + (\text{Re} \Delta \lambda_6 - \text{Re} \Delta \lambda_7) s_{2\beta}), \end{split}$$

or equivalent equations in the basis of SU(2) states³

$$\begin{split} m_{H,h}^2 &= \frac{1}{2}(m_A^2 + m_Z^2 + \Delta \mathcal{M}_{11}^2 + \Delta \mathcal{M}_{22}^2 \pm \sqrt{m_A^4 + m_Z^4 - 2m_A^2 m_Z^2 c_{4\beta} + C}),\\ \tan 2\alpha &= \frac{2\Delta \mathcal{M}_{12}^2 - (m_Z^2 + m_A^2) s_{2\beta}}{(m_Z^2 - m_A^2) c_{2\beta} + \Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2}, \end{split}$$

³Djouadi,Maiani,Polosa,Quevillon,Riquer, EPJ C73 2650 (2013), JHEP 1506 168 (2015)

where, using the notation of Djouadi et al.

$$\mathcal{M}_Y^2 = \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 \\ \mathcal{M}_{21}^2 & \mathcal{M}_{22}^2 \end{pmatrix}, \qquad \mathcal{M}_{ij}^2 = \frac{\partial^2 U}{\partial Y_i \partial Y_j}, \qquad Y = \eta, \chi, \omega^{\pm}, \qquad i, j = 1, 2$$

$$\mathcal{M}_{\eta}^2 = \left(\begin{array}{cc} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 \\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 \end{array} \right) + \left(\begin{array}{cc} \Delta \mathcal{M}_{11}^2 & \Delta \mathcal{M}_{12}^2 \\ \Delta \mathcal{M}_{12}^2 & \Delta \mathcal{M}_{22}^2 \end{array} \right),$$

 $\mathcal{M}_{11}^2 = m_A^2 s_\beta^2 + m_Z^2 c_\beta^2, \qquad \mathcal{M}_{22}^2 = m_A^2 c_\beta^2 + m_Z^2 s_\beta^2, \qquad \mathcal{M}_{12}^2 = -s_\beta c_\beta (m_A^2 + m_Z^2),$

$$\begin{split} \Delta \mathcal{M}^2_{11} &= -v^2 (\Delta \lambda_1 c_\beta^2 + \text{Re}\Delta \lambda_5 s_\beta^2 + \text{Re}\Delta \lambda_6 s_{2\beta}), \\ \Delta \mathcal{M}^2_{22} &= -v^2 (\Delta \lambda_2 s_\beta^2 + \text{Re}\Delta \lambda_5 c_\beta^2 + \text{Re}\Delta \lambda_7 s_{2\beta}), \\ \Delta \mathcal{M}^2_{12} &= -v^2 (\Delta \lambda_3 4 s_\beta c_\beta + \text{Re}\Delta \lambda_6 c_\beta^2 + \text{Re}\Delta \lambda_7 s_\beta^2), \end{split}$$

 $C = 4\Delta \mathcal{M}_{12}^4 + (\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)^2 - 2(m_A^2 - m_Z^2)(\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)c_{2\beta} - 4(m_A^2 + m_Z^2)\Delta \mathcal{M}_{12}^2s_{2\beta} + 2(m_A^2 - m_Z^2)(\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)c_{2\beta} - 4(m_A^2 - m_Z^2)(\Delta \mathcal{M}_{22}^2)c_{2\beta}$

Simplified representation for heavy CP-even Higgs boson mass if $\Delta M_{12}^2 = 0$

$$m_H^2 = m_A^2 + m_Z^2 - m_h^2 + \Delta \mathcal{M}_{11}^2 + \Delta \mathcal{M}_{22}^2$$
⁽²⁾

Post-Higgs MSSM scenarios

1. hMSSM scenario, uses simplified mixing matrix⁴ $\Delta \lambda_i$: 1-loop (ϵ -approximation); 1,2-loop (leading logarithms)

 $\Delta \mathcal{M}_{11} \sim 0, \qquad \Delta \mathcal{M}_{12} \sim 0, \qquad \Delta \mathcal{M}_{22} \neq 0$

 $m_h = 123 - 129 \ \ \Gamma \Rightarrow B$

Free parameters: m_A , $\tan \beta \epsilon$ -approximation does not respect $\lambda_i(\alpha, \beta, m_{h,H,H^{\pm}})$ transformation to the mass basis.

⁴Djouadi,Maiani,Polosa,Quevillon,Riquer, EPJ C73 2650 (2013), JHEP 1506 168 (2015); Maiani,Polosa,Riquer, PL B274 274 (2013)

2. Low-tb-high scenario⁵ (FeynHiggs) $0.5 \le \tan\beta \le 10$, 150 ГэВ $\le m_A \le 500$ ГэВ

- 1) all fermionic superpartner masses $\sim M_{\text{SUSY}}$;
- 2) M_{SUSY} variation range from several TeV for large m_A (tan β) up to 100 TeV for moderate m_A (tan β) with imposed constraints

$$\begin{split} &\tan\beta \leq 2 \quad : \quad X_t / M_{\text{SUSY}} = 2, \qquad X_t = A_t - \mu / \tan\beta, \\ &2 < \tan\beta \leq 8.6 \quad : \quad X_t / M_{\text{SUSY}} = 0.0375 \tan^2\beta - 0.7 \tan\beta + 3.25, \\ &8.6 < \tan\beta \quad : \quad X_t / M_{\text{SUSY}} = 0; \end{split}$$

3) $A_t = 2$ T₃B, $\mu = 1.5$ TeV, gaugino mass $M_2 = 2$ TeV.

3. EFT approach, Lee,Wagner, PR D92, 075032 (2015); Carena, Haber, Low, Shah, Wagner PR D91 035003 (2015). Uses SM \rightarrow THDM matching at m_A scale in the Higgs basis or effective THDM potential in a generic basis.

We use the approach which in the following is denominated as ' $\Delta \lambda_{F,D}^{vfr}$ scenario'⁶ Has beeen used for the case of explicit CP violaton (Workshop on CP Studies and Non-Standard Higgs Physics, CERN Report 2006-009).

⁵S. Heinemeyer, LHC-HXSWG-3, E. Bagnashi *et al.*, LHCHXSWG-INT-2015-004; J.R. Espinosa and R. J. Zhang, JHEP, 0003, 26 (2000).

⁶Akhmetzyanova, Dolgopolov, M.D., PR D71, 075008 (2005)

$\Delta \lambda_{F,D}^{\tt wfr}$ scenario

Set of corrections:

- 1-loop resummed threshold, wave-function renormalization
- non-leading D-terms
- 2-loop electroweak and QCD⁷
- Yukawa

For instance,

$$\begin{split} \lambda_1 &= \quad \frac{g_2^2 + g_1^2}{8} + \frac{3}{32\pi^2} \Big[h_b^4 \frac{|A_b|^2}{M_{\rm SUSY}^2} \left(2 - \frac{|A_b|^2}{6M_{\rm SUSY}^2} \right) - h_t^4 \frac{|\mu|^4}{6M_{\rm SUSY}^4} + \\ &+ 2h_b^4 l + \frac{g_2^2 + g_1^2}{4M_{\rm SUSY}^2} (h_t^2 |\mu|^2 - h_b^2 |A_b|^2) \Big] + \Delta \lambda_1^{\rm wfr} + \\ &+ \frac{1}{768\pi^2} \left(11g_1^4 + 9g_2^4 - 36 \left(g_1^2 + g_2^2\right) h_b^2 \right) l - \Delta \lambda_1 [2 - \log], \end{split}$$

where $l=log(M_{SUSY}^2/\sigma^2)$ and $\Delta\,\lambda_1^{\rm wfr},\,\Delta\lambda_1[2-{\rm loop}]$ are

⁷Haber,Hempfling,Hoang, ZP C75 539 (1997); Carena,Espinosa,Quiros,Wagner PL B355 209 (1995); Heinemeyer,Hollik,Weiglein, EPJC C9 343 (1999); Pilaftsis,Wagner, NP B553 3 (1999)

wfr terms

$$\begin{split} \Delta\lambda_1^{\rm wfr} &= \frac{1}{2}(g_1^2 + g_2^2)A_{11}', \qquad \Delta\lambda_2^{\rm wfr} = \frac{1}{2}(g_1^2 + g_2^2)A_{22}', \\ \Delta\lambda_3^{\rm wfr} &= -\frac{1}{4}(g_1^2 - g_2^2)(A_{11}' + A_{22}'), \qquad \Delta\lambda_4^{\rm wfr} = -\frac{1}{2}g_2^2(A_{11}' + A_{22}'), \qquad \Delta\lambda_5^{\rm field} = 0, \\ \Delta\lambda_6^{\rm wfr} &= \frac{1}{8}(g_1^2 + g_2^2)(A_{12}' - A_{21}'^*) = 0, \qquad \Delta\lambda_7^{\rm wfr} = \frac{1}{8}(g_1^2 + g_2^2)(A_{21}' - A_{12}'^*) = 0, \\ \end{split}$$
 where A'

$$\begin{split} A'_{ij} &= -\frac{3}{96 \, \pi^2 \, M_{SUSY}^2} \left(h_t^2 \left[\begin{array}{cc} |\mu|^2 & -\mu^* A_t^* \\ -\mu A_t & |A_t|^2 \end{array} \right] + h_b^2 \left[\begin{array}{cc} |A_b|^2 & -\mu^* A_b^* \\ -\mu A_b & |\mu|^2 \end{array} \right] \right) \times \\ & \times \left(1 - \frac{1}{2} \, l \right) \,. \end{split}$$

two-loop terms

$$\begin{split} \Delta\lambda_1[2-\mathrm{loop}] &= -\frac{3}{16\pi^2} h_b^4 \frac{1}{16\pi^2} (\frac{3}{2} h_b^2 + \frac{1}{2} h_t^2 - 8g_{\mathrm{S}}^2) (X_b l + l^2) + \\ &+ \frac{3}{192\pi^2} h_t^4 \frac{1}{16\pi^2} \frac{|\mu|^4}{M_{\mathrm{SUSY}}^4} (9h_t^2 - 5h_b^2 - 16g_{\mathrm{S}}^2) l \end{split}$$

Benchmark parameter sets

4. $m_h^{\text{alt}} (m_h^{\text{mod}+})^8 \qquad A/M_{\text{SUSY}} = 2.45(1.5)$

5. Small μ scenario

• • •

Input parameter set in the following evaluations is in most cases identical to Bagnaschi et al, 'Benchmark scenarios', LHCHXSWG-INT-2015-004 unless otherwise specified.

Simplified mixing matrix (hMSSM)

MSSM parameter sets

(i; j)	<i>j</i> , <i>М</i> _{SUSY} [ТэВ]				0.004
$i, \tan eta$	1	1.5	3	3.5	0.004
1	2	6	5	10	0.003
	3.5	3.1	8.3	8 [7]	
2.5	2	4	5.5	10 Ĕ	0.002
	6.5	6.5	14	8.5 🖉	
5	2.2	3	5	5 4	0.001
	(7; 10)	(-5;5)	(-5;5)	(-5;5)	
30	1.4	1.7	0	0.5	0.000
	(-2;2)	(-3;3)	(-9;9)	(-11; 11)	
T. C					-0.001 -3 -2 -1 0 1 2 3
Таолица : Parameter sets $(1, 2) = (1, 2) M_{12} = (1, 2) M_{12}$					u [TeV]

 $(i; j) \equiv (\tan \beta, M_{SUSY}, A, \mu)_{ij}$, where i, j = 1, ..., 4, $m_h = 123 - 128 \text{ GeV}$, $m_A = 300 \text{ GeV}$, in [TeV]. The sets (2;3),(3;2),(4;1) correspond to Djouadi et al, 2013.

Puc. : ΔM_{11}^2 - green, ΔM_{12}^2 - blue, ΔM_{22}^2 - red, (3;3) - long-dashed line, (4;2) - dashed line, (4;4) - solid line.

For $\tan \beta > 5$ and $M_{SUSY} > 1$ TeV mixing is weakly dependent on μ at some fixed A respecting $m_h = 125$ GeV, so $\Delta \mathcal{M}^2_{11,12} = 0$ is a satisfatory approximation. For the full 5-dim parameter space m_A , $\tan \beta$, μ , $A_{t,b} = A$, M_S such approximation is not always valid. Best agreement is reached at $M_{SUSY} \geq 3.5$ TeV and $\tan \beta \sim 30$.

Mixing matrix elements for $\tan \beta > 5$ and $M_{SUSY} > 1$ TeV, $\Delta \lambda_{F,D}^{wfr}$ scenario

Puc. : (i,j)=(column,line number) denotes the parameter set as indicated in the Table. μ in TeV, ΔM_{ij} in GeV.

2. Comparison of hMSSM (dashed) and $\Delta \lambda_{F,D}^{\text{wfr}}$ (solid) scenarios

Рис. : (2;4) - blue, (3;4) - red, (4;4) - green.

Max departure of α value is 0.047 (37%) at large tan $\beta = 30$ and 0.312 (50%) at small tan $\beta = 2.5$. For heavy CP-even scalar H departure is 0.004 GeV (0.1%) at tan $\beta = 30$ and 4.009 GeV (1.3%) at tan $\beta = 2.5$.

1 2 3 4 5 6 7 8	9 10 11 12 1	13 14 15 16 17 1	8 19 20 21 22 23	24 25 26 27 28 29 30 31
-----------------	--------------	-------------------------	------------------	-------------------------

3. Comparison of hMSSM with $\Delta\lambda_{F,D}^{\rm vfr}$ without additional constraints, M_{SUSY} =500 GeV.

Рис. : Relative differences of m_H and α . $m_h = 125$ GeV, $\mu = 1.5$ TeV, A = 2 TeV

3. Comparison of hMSSM with $\Delta \lambda_{F,D}^{\text{vir}}$ using the constraint of 'low-tb-high' scenario $M_{SUSY} = (0.0375 \tan^2 \beta - 0.7 \tan \beta + 3.25)/X_t$

Puc. : Relative differences of m_H and α . $m_h = 125$ GeV, $\mu = 1.5$ TeV, A = 2 TeV

Comparison of Orsay+Rome evaluation (HXSWG meeting, March 1995) based on hMSSM with $\Delta\lambda_{FD}^{rfr}$ scenario

Рис. :

 m_h dependence on $A = A_{t,b}$ in $\Delta \lambda_{F,D}^{\text{wfr}}$ scenario.

Pvc. : m_h dependence on $A = A_{t,b}$ at $m_A = 300$ GeV, $\mu = 1$ TeV for the tree sets (1) $M_{SUSY} = 3$ TeV, $\tan \beta = 2.5$ (blue); (2) $M_{SUSY} = 1.5$ TeV, $\tan \beta = 5$ (red); (3) $M_{SUSY} = 1$ TeV, $\tan \beta = 30$ (green). With a limited set of $\Delta \lambda_i^a$ corrections curves have the same shape, but are 5-10 GeV lower.

3D surfaces of $m_h = 125$ GeV at low and high $\tan \beta$ in M^{SUSY}, μ, A space for $m_A = 0.3$ TeV and $m_A = 1$ TeV. $\Delta \lambda_{F,D}^{strip}$ scenario.

Рис. : Surface of $m_h = 125$ GeV, $\tan \beta = 1$, $m_A = 300$ GeV (left) and 1 TeV (right)

Puc. : Surface of $m_h = 125$ GeV, $\tan \beta = 2.5$, $m_A = 300$ GeV (left) and 1 TeV (right)

Puc. : Surface of $m_h = 125$ GeV, $\tan \beta = 5$, $m_A = 300$ GeV (left) and 1 TeV (right). Right 3D plot is rotated 90 degrees.

Pvc. : Surface of $m_h = 125$ GeV, $\tan \beta =$ 30, $m_A =$ 300 GeV (left), A, μ formally extended beyond a perturbative calculation framework

Contours of $m_h = 125$ GeV at low and high $\tan \beta$ in M^{SUSY} , A plane for $m_A = 0.3$ TeV and $m_A = 1$ TeV. $\Delta \lambda_{F,D}^{\text{vfr}}$ scenario.

Contours of $m_h = 125$ GeV at low and high $\tan \beta$ in μ, A plane for $m_A = 0.3$ TeV and $m_A = 1$ TeV. $\Delta \lambda_{F,D}^{\text{ter}}$ scenario.

Contours of $m_h = 125$ GeV at low and high $\tan \beta$ in μ , A plane for $m_A = 0.3$ TeV and $m_A = 1$ TeV. $\Delta \lambda_{F,D}^{\text{vfr}}$ scenario.

Puc. : Contours of $m_h = 125$ GeV, $m_A = 300$ GeV (left) and $m_A = 1$ TeV (right)

Domains of m_h in the μ, A plane for $A_{t,b} = 2$ TeV and $\mu = 1.5$ TeV. $\Delta \lambda_{F,D}^{\text{vfr}}$ scenario.

Puc. : $M_{SUSY} = 500 \text{ GeV}$ (left) and 750 GeV (right).

Domains of m_h in the $\mu_i A$ plane for $A_{t,b} = 2$ TeV and $\mu = 1.5$ TeV. $\Delta \lambda_{F,D}^{\text{wfr}}$ scenario.

Puc. : $M_{SUSY} = 1$ TeV (left) and 1.25 TeV (right).

PMC. : $m_h = 124 - 126$ GeV, $M_{\text{SUSY}} = 1.5$ TeV and $\mu = 200$ GeV or 1 TeV. Left panels: tan $\beta = 4$, $A = 2.45 M_{\text{SUSY}}$ (m_h^{alt} scenario); right panels tan $\beta = 10$, $A = 1.5 M_{\text{SUSY}}$ ($m_h^{\text{mod}+}$ scenario). Results are stable with respect to higgs superfield parameter μ variation.

Summary

- Sensitivity of all results to radiative corrections is as a rule high. Reduction of multidimensinal MSSM parameter space, although very attractive for qualitative interpretations, should be carefully performed if possible in some restricted regions only
- For low $\tan\beta \leq 3$ parameter sets M_{SUSY} top value is restricted at the level of a few (3–4) TeV.
- For high $\tan \beta \ge 30$ an ambiguity of M_{SUSY} is observed, both heavy (TeV) and extremely heavy (20–30 TeV) scales are possible. However, with this observation one should not get involved by high $\tan \beta$ in the range $m_{H^{\pm}} \le 400$ GeV because of specific $t\bar{t} \to H^{\pm} \to 6$ jets which are not observed.
- Some 'tuning' of results for comparisons could be useful. Deviations are significant. Direct comparisons of two-doublet effective potentials (e.g. evaluation of λ₁,...λ₇ for a given set of input parameters) are not obvious since they are defined for different bases (in particular generic (v₁, v₂) basis and Higgs basis (0, v)), so different potential forms can give identical mass spectrum and couplings.