

Bob Says: "THE future of the World is in

CANCER THERAPY and IMAGING: \$100 Billion Market

RADIOISOTOPES: \$ 40 Billion Market

HOMELAND SECURITY: \$80 Billion Market

"This is my slide edited by an accelerator physicist!"

Conventional Applied Accelerator Types

- 1. **Synchrotons** (*multi-GeV TeV energies*)
 - Pulsed with ramping magnetic fields (0.5-50Hz)
 - Swept-frequency accelerating systems
 - Separated components
 - Current limited by size
 - Variable energy
- 2. **Cyclotrons** (low medium energies 1 GeV limit)
 - Fixed magnetic fields
 - CW beams, fixed-frequency accelerating system
 - Higher energies: swept-frequency accelerating systems
 - Very large at high energy for low-loss CW beam
 - Synchrocyclotron for low-loss compact applications.
 - High currents (mA for CW beam)
 - Fixed energy
- 3. **Linacs** (any energy)
 - Longest footprint
 - Most costly no multipoass through components
 - Ultra-high currents 100 mA
 - Variable energy
 - constant beam properties synchrotron speeds
- 4. **FFAGs** (low to high \sim 2 GeV)
 - Fixed magnetic fields
 - CW beams well into the relativistic regime
 - Ultra-compact non-scaling designs
 - High current tens of mA
 - Variable energy with long straight sections

Synchrotron

Low Current (<mA) High Energy (TeV) Pulsed Beam

Cyclotron

High Current (<A)
Low Energy (600MeV)
Continuous beam

Linac

High Current, High Energy Pulsed or continuous beam: Large, expensive

FFAG

High Current (<A), High Energy (few GeV) Continuous beam, compact

Principles of Transverse Beam Focusing

- 1. Centripetal focusing (used in Cyclotrons + FFAGs):
 - Pathlength variation in dipole body field, bend plane only
 - Horizontally focusing or <u>defocusing</u> for FFAGs with reverse bends (radial sector).

- 2. Edge focusing (used in Cyclotrons + FFAGs)*:
 - Quadrupole-like: focusing horizontally, defocusing vertically, or vice versa, or no focusing depending sign of the B field and on entrance angle (defined relative to the normal to the magnet edge).

- 3. Field -gradient focusing (used in Synchrotrons + FFAGs)
 - Body gradient, fields components > dipole; AG envelope focusing:

Accelerators and beam control

- 1. Centripetal (*Cyclotrons* + *FFAGs*):
 - bend plane only, horizontally defocusing or focusing
 - Strength $\propto \theta/\rho$ (bend angle/bend radius of dipole field component on reference orbit)
- 2. Edge focusing (*Cyclotrons* + *FFAGs*):
 - ☐ Horizontally focusing / vertically defocusing, vice versa, or no focusing depending on field at entrance and entrance angle
 - □ Strength \propto tan η/ρ , (or $\sim \eta/\rho$ for reasonably small edge-crossing angles)
- 3. Gradient focusing (*Synchrotrons* + *FFAGs*) :
 - Body gradient, fields components > dipole:

$$B = a + bx + cx^2 + dx^3 + \dots$$
 $B' = b + 2cx + 3dx^2 + \dots$

- ☐ Linear field expansion, constant gradient
 - Synchrotrons + linear-field nonscaling FFAGs (muon accelerators)
- Nonlinear field expansion up to order k, magnitude of gradient increases with r or energy:
 - ☐ Scaling FFAGs
- \square Arbitrary nonlinear field expansion, magnitude of gradient increases with r or energy:
 - □ Nonlinear Non-scaling FFAGs

Edge crossing angles are kept deliberately small in large multi-cell synchrotron rings. This term becomes increasingly important for and causes problems in small synchrotron rings.

So What is a FFAG

A Fixed Field Alternating Gradient Accelerator is a ~ a cyclotron with strong synchrotron-like focusing

- The ns-FFAG combines all forms of transverse beam (envelope) confinement in an arbitrary, optimized magnet field:
 - For the horizontal, the three terms are

$$\frac{\text{synchrotron}}{1/f_F = k_F l} + \frac{9}{\rho_F} + \frac{\eta}{\rho_F}$$

with θ is the sector bend angle, η the edge angle (edge angle is assume small so tangent is approximated), length, l, is the F half - magnet length and k_F is the "local" gradient for an arbitrary order field.

- The power of the FFAG is that the confinement terms can be varied independently to optimize machine parameters such as footprint, aperture, and tune in a FFAG AND DC beam can be supported to very high energies

Understanding a ns-FFAG

- Apply a "synchrotron" strong-focusing field profile to each "cyclotron" orbit
- Strong-focusing allows
 - Long injection/extraction or synchrotron-like straight
 - > Strong RF acceleration modules
 - Low -loss profile of the synchrotron
 - CW beam to high energies in compact structure
 - ➤ 400 MeV/nucleon: charge to mass of ½ (carbon)
 - > 1.2 GeV protons
 - Avoidance of unstable beam regions
 - constant machine tune

The international FFAG collaboration

INTERNATIONAL DEVELOPMENT OF FFAGS

RACCAM: proton therapy LPSC Grenoble, France

ERIT: neutron source KURRI, Japan

PRISM: intense muon beam Lepton flavor violation exp. Osaka, Japan

PAMELA: hadrontherapy design Oxford, U.K.

150 MeV proton, 100 Hz- kHz FFAG KEK Japan

KURRI: ADS test Kyoto U. Research Reactor Institute, Japan

70 - 430 MeV/nucleon Ion FFAG 330 MeV pCT

Compact CW ns-FFAG racetrack design capable of variable energy and various applications

POP, 1st p FFAG, KEK, Japan

EMMA: POP muon acc demo Daresbury Laboratory, U.K.

BOB (previously EMMA)

- Enormous advances in FFAG technology since the first machine at Daresbury ≅ first cyclotrons
 - Well maybe not quite

The Energy Crisis

The world is already in an energy crisis, worsening rapidly as fossil fuels deplete and their devastating impact on climate change increases:

"A reactor needs an accelerator like a fish needs a bicycle..."

FFAG Driven Nuclear Reactor

Accelerator Driven Subcritical Reactor Meltdown Impossible! No Proliferation!

World Electric Power Production is Currently Around ~ 5000 Gigawatts

Power Usage is Projected to Double as BRIC Countries Develop

Once the Reality of Clean (Green), Safe Nukes is Established, revolutionize the Entire World Power Market

A 1 Gigawatt FFAG Driven Reactor Would Require 3 FFAGs for Redundancy at ~\$80M each (assumes profit)
The Potential LINAC Competition costs \$100s of Millions More

Hey this is my joke

Spallation neutron vs fission neutrons

Nuclide	fiss/abs Thermal	fiss/abs Fast
239Pu	63%	79%
240Pu	0.34%	43%
241Pu	23%	82%
242Pu	1.4%	36%
²³⁷ Np	1.9%	17%
²³⁸ Np	91%	84%
²³⁹ Np	3.9%	19%
²⁴¹ Am	1.3%	12%
²⁴² Am	83%	84%
²⁴² Cm	8.9%	33%
²⁴⁴ Cm	6.0%	32%
²⁴⁶ Cm	18%	53%

ADSRs: accelerator power

"My Conclusion"

"A fish needs a bicycle..."

The FFAG vs MYRHHA Linear Accelerator for ADSR waste transmutation

A FFAG 1 GeV high power accelerator facility

S. Sheey, high current OPAL simulations, AccApp13 paper – operates at 20 mA as a storage ring

The Looming Radioisotope Shortage

Most medical imaging radioisotopes have short lives, - must reach patient within 110 minutes for Alzheimer's scan

Many isotopes can be manufactured in the hospital

using accelerators!

80% of procedures use ^{99m}Tc (from ⁹⁹Mo) (bone scans, nuclear stress tests)

⁹⁹Mo produced in <10 aging reactors worldwide,

- Transport causes large loss in activity and increased cost
- 2009 world ⁹⁹Mo crisis due to reactor failures
- Main supply (Chalk River, Canada) shuts down by 2016!
- Target (weapons-grade uranium) soon not available

PET isotopes: Alzheimer's and whole body scan

PIP: FFAG for Radioisotope Production The Huddersfield Accelerator Project

PET and ⁹⁹Mo isotopes can be produced with new accelerator and target technologies (no uranium).

IDEAL FOR THE HOSPITAL ENVIRONMENT!

Extraction foils

PET isotope FFAG (<2m diameter)
Multiple target stations and isotopes
Injector for ⁹⁹Mo(⁹⁹Tc) stage

Worldwide demand for PET and ⁹⁹Tc isotopes increasing 10%/year ⁹⁹Tc crisis by 2016!

Supporter

- ➤ First high-current compact proton accelerator will corner ⁹⁹Tc market.
- Linacs : costly, large
- Cyclotrons: high losses (stripping extraction and highly radioactive
- √ FFAGs:
 - ✓ more target stations,
 - efficient production and use of hospital space
 - ✓ critical isotopes- combined PET/99Tc system.

PROTON/ION VS. X-RAY CANCER THERAPY

> 2/3 of cancer patients treated with radiation therapy: >95% with X-rays

X-Rays: radiation poisoning

Protons/lons: no radiotoxic side effects

Higher radiation dose to healthy brain than tumor!

Proton/carbon therapy targets tumor precisely NOT healthy tissue! Critical for pediatric cancers

Why heavier ions vs protons

Radiobiological efficiency (RBE) of carbon ion beams

Better control of radioresistant tumours

FFAG PROTON/ION CANCER THERAPY

5000 electron linacs for X-ray cancer therapy worldwide

The carbon/ion synchrotron vs ion FFAG (430 MeV/nucleon)

- Use of proton therapy is expanding rapidly and several ion therapy centers under construction
- Carbon/lon Therapy required for radio-resistant tumors and both proton or ion therapy for X-ray therapy treatment failures
- The demand for ultra compact particle therapy accelerator technology is projected to be ~500-1000 units.
 - ✓ Only Competition is the large synchrotron. Issues with cyclotrons at these energies for ions.

Transmission Radiograph with NRF

- Nuclear resonance lines are now "missing" from spectrum and can be identified.
- Photon spectroscopy combined with transmission provides 2D isotopic composition to the radiograph.

Simulation: COSY Results: Electron Ring

COSY results and tracking at 3 energies: 50 keV, 4.4 MeV, and 9 MeV machine. Except for the tune change required at horizontal injection, the DA is very large.

Serpentine channel: quasi-isochronous Acceleration in a nonscaling FFAG

Acceleration in serpentine channel

$$\delta T \sim \frac{2}{h} \frac{V_{min}}{\Delta E} \sim \frac{1}{turns}$$

example

The machine which takes 100 turns to the top energy needs 1% level of isochronous.

Longitudinal phase space trajectories of beams with five different initial phases in EMMA. All of these cases clearly demonstrate acceleration within the serpentine channel.

In Memoriam

- Bob has been one of the strongest advocates of accelerator applications
 - huge supporter of FFAGs and recent advances
- One question Bob now that you're emeritus - do you need a new job?
 - There might be openings back in the states

Breaking News

Trump's Energy Amplifier

Donald Trump has purchased a Nobel Prize from ebay and the rights to ADSR trademark; hehas renamed it The Trump Amplifier.

Trump has als proposed buying Mexico as the prototype site.

Bob - about that job in the states

