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L.D. Landau ( 1937 )

A second order phase transition is well described 
phenomenologically if one identifies: 

a) The order parameter field 

b) Symmetry group G and its spontaneous breaking

)(xi

Phenomenology of second order phase 
transitions

The order parameter field and spontaneous 

symmetry breaking



Landau-Ginzburg Energy Functional 
describes a vast array of critical 

phenomena including magnetic phase 
transitions, condensation effects in 
superconductivity and superfluidity
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Higher order terms:                                            

Effective free energy near the phase transition

Most general functional symmetric under

and space rotations, with lowest possible powers of

ie  

 

  ,....)*(,* 32
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are expected to be negligible close enough to Tc. 

and lowest number of gradients      is
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The remaining coefficients can be expanded around 

Tc giving rise to a spontaneous symmetry breaking 

effect
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Other degrees of freedom are“irrelevant variables”
sufficiently close to the critical temperature Tc. The 
“relevant” part, namely the symmetry breaking 
pattern and dimensionality defines“the universality 
class. 

An example: paramagnetic-ferromagnetic 

phase transition

It requires planar classical spins of fixed length

1S


defined on the D-dimensional lattice (the type of 
lattice and other microscopic details are also 
irrelevant).
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or, using complex number representation

Order parameter : average net magnetization.

Symmetry : 2D rotations
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Symmetry means that the energy of the rotated state 
is the same as that of the  original (not rotated) one

ie  
Using complex numbers the 
symmetry transformation 
becomes U(1):


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0 SM
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1. T=0

perfectly 
ordered

2. 0<T<Tc

ordered

3. T>Tc

disordered

large

Small but 
nonzero

0M


0 SM




In the general case:



Perfect Diamagnetism in Type I 
Superconductors

• m = -1

• Means:

B = mo(H + M) 

B = mo(H + m H)

B = 0

Normal Metal Superconductor

Flux is excluded from the bulk by 
supercurrents flowing at the surface to 
a penetration depth (l) ~ 200-500 nm

HM

M=-H



Type I and Type II Superconductors

• Type I

– Material Goes Normal Everywhere 
at Hc

 Type II
– Material Goes Normal Locally at Hc1, 

Everywhere at Hc2

HC2HC1 H

M

Complete flux exclusion up to 

Hc, then destruction of 

superconductivity by the field

Complete flux exclusion up to Hc1, then partial 

flux penetration as vortices

HC1

M

H



Adding a gauge term describing magnetic 
fields leads to the Meissner effect and 
vortex arrays: superconductivity and 

magnetism mutually “avoid” each other
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Landau-Ginzburg description of the
superconducting-normal transition

Symmetry and order parameter

   ( ) ( ), ( )x x k c k c k
 

    

The complex order parameter is “amplitude of the 
Cooper pair center of mass:

which is either the gap function of BCS or the charge 
density of Cooper pairs
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density of the Cooper pairs, 
the Bose condensate

the superconductor (the 
Josephson, the global U(1) )  
phase

quantum fluctuations of the ordered state (Cooper 
pair) are ignored and the “Bose condensate”
amplitude is treated as a semi- classical field

The symmetry content of this complex field can be 
better specified via modulus and phase:
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Broken Symmetry and Free Energy

The broken symmetry is that of U(1)

Without an external magnetic field the free energy 
near the phase transition is:
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Ginzburg and Landau (1950) postulated to generalize 
this to the case of arbitrary magnetic field

)(xB


using the local gauge invariance of electrodynamics.
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This invariance dictates the charge fields coupling to
the magnetic field. 

To ensure local gauge invariance one replaces any 
derivative by a covariant derivative:

The local gauge invariance of the gradient term 
follows from linearity of the transformation of the 
covariant derivative:
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Minimizing the free energy with covariant derivatives 
one arrives at the set of GL equations: the nonlinear
Schrödinger equation (variation with respect to )
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and the supercurrent equation (variation of A):

Ginzburg – Landau equations
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Electrodynamics is invariant under local gauge 
transformations:

 x

Influence of the magnetic field
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Two characteristic length 

scales



characterizes variations of            , while the  

penetration depth l characterizes variations of
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Both diverge at T=Tc.

GL equations possess two scales. Coherence length



22

The only dimensionless parameter is the ratio of the two 
lengths which is temperature independent:

( ) *

( ) * 2

T m c

T e
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2

1
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Abrikosov (1957)

Ginzburg – Landau parameter

(type II superconductivity ) there exist “topologically 
nontrivial” solutions – the Abrikosov vortices.

Properties of solutions crucially depend on the GL 
parameter. When                                                                                             



Quantized Vortices in Helium-4 Vortices in type-II superconductors

Abrikosov vortex lattice



Vortex properties

• Two characteristic lengths

– coherence length , the pairing length of the 
superconducting pair

– penetration depth l, the length over which 
the screening currents for the vortex flow

• Vortices have defined properties in 
superconductors

– normal core diameter, ~2

– each vortex contains a flux quantum 0

currents flow at Jd over diameter of 2l

– vortex separation a0 =1.08(0/B)0.5

Hc2 =/2
2

0  h/2e = 2.07 x 10-15 Wb
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Type I :

Minimal area of 
domain walls.

H
H

Type II:

Maximal area of 
domain walls.

Interface energy is negative for type II   
superconductors, while positive for the type I.

Mixed state under applied magnetic field
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Magnetic Flux quantization.
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To minimize the potential term 
far from an isolated vortex where 
B=0, one has to minimize the 
modulus of the order parameter:

The phase is free to vary. In order to minimize the 
(positive) gradient term, one demands:

0gradF
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A
c
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n=1 is energetically favored over n>2

The normal core                 region shrinks to a point.0
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Shape of the vortex solution

Vortex – a linear 
topological defect.

0
B

 l
r

The “singularity”
line 0

core
 l

J

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Vortices and systems of vortices (vortex lattice)

To create a vortex, one has to provide energy per unit 
length ( line tension ) 

2

0 log
4

l

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   
   

Line energy

Inter-vortex repulsion and the Abrikosov

flux line lattice

Therefore vortices enter an infinite sample only when
the magnetic field exceeds certain value  
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They interact with each other via a complicated vector-

vector force. Parallel straight vortices repel each other 

forming highly ordered structures like flux line lattice 

(as seen by STM and neutron scattering).

Pan et al 

(2002)

S.R.Park et al

(2000)

Interactions between vortices
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first vortex 
penetrates. 

cores overlap 

H
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Meissner
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Tc

Normal

As a result the phase diagram of type II SC is richer 

than that of the two-phase type I
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1cH

Two theoretical approaches to the mixed state

London appr. for 

infinitely  thin lines
Just above      vortices are well 

separated and have very thin cores 

2cHJust below      vortex cores almost overlap. 

Instead of lines one just sees array of 

superconducting “islands”

Lowest Landau level 

appr. for constant B

Tc

Mixed

Meissner

Hc2

Hc1
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In high Tc SC due to higher Tc, smaller  and high 
anisotropy thermal fluctuations are not negligible. 
Thermally induced vibrations of the flux lattice can 
melt it into a ‘vortex liquid’

Normal

Vortex 
liquid

2cH

1cH
Meissner

FLL

H

T
cT

The phase diagram becomes 
more complicated.

Thermal fluctuations and the vortex liquid
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Metastable states: zero field cooled and field 

cooled protocols result in different states.

Neutron scatering in Nb

Ling et al (2000)
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Vortices can entangle around each other like polymers, 
however due to vectorial nature of their interaction 
they can also “disentangle” or ‘cut each other’, 
monopole-like?

There are profound differences compared to the 
physics of polymers

Vortex “cutting” and entanglement
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Vortices are pinned by disorder creating a glassy state 
or viscous entangled liquid. In the glass phase 
material becomes superconducting (zero resistance) 
below a certain critical current value Jc.

Columnar
point

Disorder and the vortex glass
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In 2D thermal fluctuations generate a curious Kosterlitz – Thouless (KT) vortex 

plasma exhibiting many unique features

Unstable normal domain splits into vortex-antivortex (KT) plasma

Polturak, Maniv (2004)
Scanning SQUID magnetometer 

Kirtley,Tsuei and 

Tafuri (2003)
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Disorder profoundly affects dynamics leading to the 
truly superconducting vortex glass state in which 
exhibits irreversible and memory dependent 
phenomena

It is a rich playground to study vortex glass dynamics

Magneto-optics in Nb

Johansson et al (2004)

Vortex dynamics in the presence of disorder
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Summary (so far)

1. In extreme type II superconductors the “topological”
vortex degrees of freedom dominate most of the 
macroscopic magnetic and transport properties.

2. One can use the GL theory to describe these degrees 
of freedom.

3. Experiments suggest that in new high Tc SC thermal 
fluctuations are important as well as disorder.

4. The vortex matter physics is quite unique, well 
controlled experimentally and may serve as a 
“laboratory” to test a great variety of theoretical 
ideas.

5. It can improve our understanding of magnetic 
monopoles



Electric and magnetic monopoles and 
dipoles

Fields            Monopoles    monopole assemblies                                              dipoles

???



field lines around
dipoles and monopoles



Monopole isolation?



Spin Ice Representation of a Magnetic 
Monopole

.
• H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T.J. Sato, 

J.W. Lynn, K. Matsuhira and Z. Hiroi. Observation 
of magnetic monopoles in spin ice. Journal of the 
Physical Society of Japan,78, No. 10, Oct. 13, 
2009. 

• Morris, David Jonathan Pryce, et al. "Dirac strings 
and magnetic monopoles in the spin ice 
Dy2Ti2O7." Science 326.5951 (2009): 411-414

• Bramwell, S. T., et al. "Measurement of the 
charge and current of magnetic monopoles in 
spin ice." Nature 461.7266 (2009): 956-959.



This has been accomplished in a spin 
lattice by knocking one spin off its 

direction



The material freezes into four-sided crystals (a pyramid with a 
triangular base) and the magnetic orientation, or "spin," of the 
ions at each of the four tips align so that their spins are 
balanced—two spins point inward and two outward. But using 
neutron beams at the NCNR, the team found they could knock 
one of the spins askew so that instead three point in, one out 
… "creating a monopole, or at least its mathematical 
equivalent” .

Because every crystal pyramid shares its four tips with adjacent 
pyramids, flipping the spin of one tip creates an "anti-
monopole" in the next pyramid over. The team has created 
monopole-antimonopole pairs repeatedly in a relatively large 
chunk of the spin ice, allowing them to confirm the monopoles' 
existence through advanced imaging techniques such as 
neutron scattering. 



Magnetic monopoles are created (top) when the spin of an ion in one corner 
of a spin ice crystal is knocked askew, creating a monopole (red sphere) and 

adjacent antimonopole (blue sphere). Neutron scattering shows the spin ice's 
transition from its normal state (center) to the monopole state. Monopoles 

scatter neutrons in a telltale fashion indicated by the red arrows in (bottom.) 



Pietilä, Ville; Möttönen, Mikko (2009). "Creation of Dirac Monopoles in Spinor 
Bose–Einstein Condensates". Phys. Rev. Lett. 103: 030401. arXiv:0903.4732. 
Bibcode:2009PhRvL.103c0401P. 

• In superfluids, there is a field B*, related to 
superfluid vorticity, which is mathematically 
analogous to the magnetic B-field. Because of the 
similarity, the field B* is called a "synthetic 
magnetic field". 

• In January 2014, it was reported that monopole 
quasiparticles for the B* field were created and 
studied in a spinor Bose–Einstein condensate.

• This constitutes the first example of a quasi-
magnetic monopole observed within a system 
governed by quantum field theory.

http://prl.aps.org/abstract/PRL/v103/i3/e030401
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/0903.4732
https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/2009PhRvL.103c0401P
https://en.wikipedia.org/wiki/Superfluid


Ray, M. W., Ruokokoski, E., Kandel, S., 
Möttönen, M. & Hall, D. S. Nature 505, 

657–660 (2014).

A condensate of cold Rb atoms with spins can be a model for a 
magnetic monopole, in which the magnetic field jots out of an 
isolated pole — except in one direction where there is no 
field. Vorticity a proxy for magnetism



Physics beyond the standard model

• Magnetic monopoles

• Q-balls
G.R. de Melo, M. de Montigny, J. Pinfold and J.A. Tuszynski, 

Symmetries and soliton solutions of the Galilean complex 
Sine-Gordon equation, Physics Letters A (accepted January 
28, 2016), 

• Nuclearites

• strangelets


