#### LHCC Open Session – 02 March 2016

# LHCf Report on the on-going activities and interest for a p+Pb run in 2016

Lorenzo Bonechi INFN Firenze On behalf of the LHCf collaboration





#### Outline

- Extremely quick introduction
  - The LHCf experiment
  - Achieved results
- Latest data analysis
  - p+p collisions at 13 TeV

- Interest for future activity
  - Proposal of a LHCf run in case of p+Pb collisions in 2016 at  $\sqrt{s_{NN}} = 8.1 \text{ TeV}$

# Introduction: LHCf and Cosmic Ray Physics



- Possibility to study particles in the **forward direction** at LHC (neutrals:  $\gamma$ ,  $\pi^0$ , n)
  - Forward secondary particles carry a great fraction of the primary energy
- 6.5 TeV + 6.5 TeV in the LHC frame  $\rightarrow \sim 10^{17} \text{ eV}$  in the laboratory frame (LAB)
- Calibration of hadronic interaction models used for the simulation of atmospheric showers



### The experimental side





Energy resolution: < 5% for photons; 30% for neutrons

Pseudo-rapidity range:

 $\eta > 8.7$  @ zero X-ing angle **η > 8.4 @ 290 μrad** (total)

#### **Arm1 Detector**

2cm x 2cm + 4cm x 4cm GSO tiles (e.m. calo) 4 X-Y tracking layers (GSO bars)

#### **Arm2 Detector**

2.5cm x 2.5cm + 3.2cm x 3.2cm GSO tiles (e.m. calor) 4 X-Y tracking layers (silicon microstrip) LHCf - LHCC Open Session



44 X<sub>0</sub>  $\sim 1.5 \lambda_{int}$ 



### Achieved results & others



|               | Proton equivalent<br>energy in LAB (eV) | γ                                                                        | n                                   | π <sup>0</sup>                                                                      |  |
|---------------|-----------------------------------------|--------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|--|
| SPS test beam |                                         | NIM A, 671, 129<br>(2012)                                                | JINST 9 P03016<br>(2014)            |                                                                                     |  |
| p+p 900 GeV   | 4.3x10 <sup>14</sup>                    | Phys. Lett. B<br>715, 298 (2012)                                         |                                     |                                                                                     |  |
| p+p 7 TeV     | <b>2.6x10</b> <sup>16</sup>             | Phys. Lett. B<br>703, 128 (2011)                                         | Phys. Lett. B 750<br>(2015) 360-366 | Phys. Rev. D 86,<br>092001 (2012)<br>+<br>Submitted to<br>Phys. Rev. D<br>(Type-II) |  |
| p+p 2.76 TeV  | <b>4.1x10</b> <sup>15</sup>             |                                                                          |                                     | Phys. Rev. C 89,<br>065209 (2014)                                                   |  |
| p+Pb 5.02 TeV | <b>1.4x10</b> <sup>16</sup>             |                                                                          |                                     | +<br>Submitted to<br>Phys. Rev. D<br>(Type-II)                                      |  |
| p+p 13 TeV    | <b>9.0x10</b> <sup>16</sup>             | Data taken in June 2015 after the restart of LHC<br>Analysis is on-going |                                     |                                                                                     |  |
| p+Pb 8.1 TeV  | <b>3.6x10</b> <sup>16</sup>             | Letter of Intent just submitted to the LHC Committee                     |                                     |                                                                                     |  |

02/03/2016

LHCf - LHCC Open Session

# Single photon analysis for p+p 13 TeV

#### • Data set :

- 12 July 22:32-1:30 (3 hours)
- Fill # 3855, μ ~ 0.01
- ∫Ldt = 0.19 nb<sup>-1</sup>
- $-\sigma_{ine}$  = 73.1 mb
- On-going analysis
  - Event Selection
    - Photon/hadron selection
    - Multi-Hit event rejection
  - Corrections
    - PID correction
    - Multi-Hit correction
    - Unfolding (to be done)
  - Combine Arm1 and Arm2 considering systematic





### Absolute energy scale uncertainty

The uncertainty of energy scale is the largest contribution to the systematic uncertainty of the final spectra. The energy scale of detector is checked by using  $M_{\gamma\gamma}$  peak of  $\pi^0$ 



#### Table: shift of $\pi^0$ mass peak

|      | New detector | Old detector |
|------|--------------|--------------|
| Arm1 | -3.4%        | +7.8%        |
| Arm2 | -2.1%        | +3.7%        |

Thank to the careful energy-calibration of detector by the CERN-SPS beam test, the shift of  $\pi^0$ -mass-peak is reasonable compared to the uncertainty of calibration, 3.5%. The systematic error is expected to be smaller than at the previous result at Vs=7TeV

# Corrections: particle ID and multiple hits

The correction factor was driven from the template fitting method of L90% distribution





#### Comparison Arm1/Arm2



The evaluation of the systematic uncertainties is in progress

We would like to acknowledge the ATLAS collaboration for providing the measurement of the luminosity and of the cross section.

02/03/2016

LHCf - LHCC Open Session



### Preliminary comparison with models





### ATLAS-LHCf combined data analysis

- Trigger sharing with ATLAS at ~100 Hz in 2015 p+p (10 Hz in 2013 p+Pb)
- Off-line event matching
- Status (p+p 2015)
  - Event matching successfully verified
- Internal note (p+Pb 2013)
  - ATL-PHYS-PUB-2015-038
- Important to separate the contributions due to diffractive and non-diffractive collisions
  - It makes more easy improving the hadronic interaction models





# + A commonly triggered event





ATL-PHYS-PUB-2015-038 30 August 2015 Classification of Events in the Combined ATLAS-LHCf Data Recorded During the *p*+Pb Collisions at  $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ 

The ATLAS and the LHCf Collaborations





# Letter of Intent – p+Pb 2016 run



#### LHCf

Letter of Intent for a p-Pb run in 2016

Study of forward physics in

 $\sqrt{s_{\text{NN}}} = 8.1 \text{ TeV}$  proton-Lead ion

#### collisions with the LHCf detector at

#### the LHC

#### The LHCf collaboration

O. Adriani<sup>1,2</sup>, E. Berti<sup>1,2</sup>, L. Bonechi<sup>1</sup>, M. Bongi<sup>1,2</sup>, G. Castellini<sup>3</sup>,
R. D'Alessandro<sup>1,2</sup>, M. Haguenauer<sup>4</sup>, Y. Luw<sup>5,6</sup>, T. Bata<sup>7</sup>,
K. Kasahara<sup>7</sup>, Y. Makino<sup>5</sup>, K. Masuda<sup>5</sup>, E. Matsubayuhi<sup>5</sup>,
Y. Matsubara<sup>5</sup>, H. Menjo<sup>8</sup>, Y. Mu ki<sup>5</sup>, Y. Oku b<sup>5</sup>, P. Japini<sup>1</sup>,
S. Ricciarini<sup>3</sup>, T. Sako<sup>5,6</sup>, Masakuran<sup>4,5</sup>, Suzuki<sup>7</sup>, M. Shimizu<sup>10</sup>,
T. Tamura<sup>10</sup>, A. Tiberiz<sup>10</sup>, S. Tajii<sup>7</sup>, A. Tacomi<sup>1,10</sup>, W. C. Turner<sup>13</sup>,
M. Haw<sup>5</sup>, K. Yoshin<sup>14</sup>, and e.D. Zhou<sup>5</sup>

NFN Florence, Italy <sup>2</sup>University of Florence, Italy <sup>3</sup>IFAC-CNR, Florence, Italy <sup>4</sup>École-Polytechnique, Paris, France or Space-Earth Environmental Research, Nagoya University, 1stnJapan Kobayashi Maskawa Institute for the Origin of Particles and the Universe, Nagoya, Japan <sup>7</sup>Waseda University, Tokyo, Japan <sup>8</sup>Graduate School of Science, Nagoya University, Japan <sup>9</sup>Tokushima University, Japan <sup>10</sup>Kanagawa University, Yokohama, Japan <sup>11</sup>INFN Catania, Italy <sup>12</sup>University of Catania, Italy <sup>13</sup>LBNL, Berkeley, California, USA <sup>14</sup>Shibaura Institute of Technology, Japan

February 28, 2016

# Motivations

#### Energy

- $-\sqrt{s_{NN}} = 5.0 \text{ TeV} \rightarrow p_{LAB} = 1.4 \cdot 10^{16} \text{ eV}$
- $-\sqrt{s_{NN}} = 8.1 \text{ TeV} \rightarrow p_{LAB} = 3.6 \cdot 10^{16} \text{ eV}$

#### Statistics

- Measure  $\pi^0$  with increased statistics wrt 2013
- Possibility to detect the  $\eta$  meson
- Combined ATLAS-LHCf data taking (very limited in 2013)

#### Phase space

- Extend the accessible phase space up to p<sub>t</sub> > 1 GeV/c:
  - deviations from models are suggested from 2013 data at high p<sub>t</sub>

LHCf - LHCC Open Session

- Investigate a PQCD phase space region
- Scaling properties
  - Extrapolation at extreme CR energies
  - Feynman scaling: spectra in x<sub>F</sub>
     02/03/2016







### **Preliminary simulations**

The **Cosmic Ray Monte Carl**o (CRMC)<sup>\*</sup> framework has been used to simulate **10<sup>7</sup> collisions** with 4 different hadronic interaction models:

LHCf - LHCC Open Session

- DPMJET 3.0-6 p+Pb
- EPOSLHC p+Pb
- QGSJET II-04
- HIJING 1.383

02/03/2016

 $\sigma_{DPMJET} = 2.2 \text{ b}$  $L_{int} = 4.5 \cdot 10^{-3} \text{ nb}^{-1}$  (simulated)

- Small calorimeter tower centered on the beam spot
- Only the proton-remnant side has been considered in the analysis

\* We acknowledge T. Pierog, C. Baus and R. Ulrich for support





### **Preliminary simulations**

The **Cosmic Ray Monte Carl**o (CRMC)<sup>\*</sup> framework has been used to simulate **10<sup>7</sup> collisions** with 4 different hadronic interaction models:

- DPMJET 3.0-6 p+Pb
- EPOSLHC p+Pb
- QGSJET II-04
- HIJING 1.383

 $\sigma_{DPMJET} = 2.2 \text{ b}$  $L_{int} = 4.5 \cdot 10^{-3} \text{ nb}^{-1}$  (simulated)

- Small calorimeter tower centered on the beam spot
- Only the proton-remnant side has been considered in the analysis

\* We acknowledge T. Pierog, C. Baus and R. Ulrich for support 02/03/2016





### Single photon spectrum

#### Small tower (Higher rapidity)

Large tower (Lower rapidity)





#### Single neutron spectrum

#### **35% ENERGY RESOLUTION IS INCLUDED IN THESE PLOTS**



LHCf - LHCC Open Session

6000

E (GeV)

3500

DPMJET 3.0-6 -  $\sqrt{s_{_{
m NN}}}$  = 8.1 TeV

QGSJET II-04 - √s<sub>NN</sub> = 8.1 TeV – HIJING 1.383 - **√**s<sub>№</sub> = 8.1 TeV

5000

- √s<sub>NN</sub> = 8.1 TeV

→ DPMJET 3.0-6 - √s<sub>NN</sub> = 5.0 TeV

EPOSLHC

4000

2500

Energy distrib. of  $\pi^0$  (p-remnant side)

3000

2000

2000

1500

### Neutral pions



Acceptance  $\sim 2.3 \cdot 10^{-5}$  (DPMJET)

#### Important to run at 8.1 TeV to measure neutral pions and $\eta$ meson!!!

02/03/2016

LHCf - LHCC Open Session

3000

Energy (GeV)

### ATLAS-LHCf combined analysis



Information from the ATLAS central region is essential to separate the contributions due to diffractive and non-diffractive collisions.

LHCf - LHCC Open Session



# Realistic running conditions

#### Basic idea

- Reduce as much as possible the impact of the LHCf run on the HI 2016 program
- Minimal requests on the allocated time and NO further optimization of the machine parameters
- Main request: low luminosity to reduce pile-up and radiation damage, easily reachable by means of beam separation (no special dedicated optic setup)

#### Machine parameter

- $\mathcal{L} = 10^{28} \, \text{cm}^{-2} \text{s}^{-1}$
- Beam crossing angle: up to 370 urad (ideal: downward going beams at IP1)
- $-\beta^* = 0.4 \div 0.5 \text{ m}$

#### Minimum physics program (based on simulations)

- Minimum integrated luminosity to detect  $4\cdot 10^4~\pi^0$  ATLAS-LHCf common events for physics and energy calibration
- Data acquisition time depends on the bandwidth allowed by ATLAS for common data taking
- − 100 Hz common rate  $\rightarrow$  1 day
- − 400 Hz common rate  $\rightarrow$  ~ 12 h taking data in two different acceptance region



### Technical details

- Installation
  - Arm2 detector only (to minimize the interference with the ATLAS ZDC)
    - Better spatial resolution than Arm1 (silicon microstrip)
    - Faster shaping time (front-end electronics)
  - Location
    - LSS1R (between IP1 and IP2)
    - Installation during TS3 2016 with remote handling system
  - Evaluation of radioprotection issues
    - Contacts with dr. C. Adorisio (DGS/RP)
    - New evaluations based on previous docs + 2016 Chamonix
    - 300  $\mu$ Sv max expected  $\rightarrow$  ALARA level 2

#### Limiting conditions for the measurement

- Low luminosity (10<sup>28</sup> cm<sup>-2</sup>s<sup>-1</sup>)
  - At 10<sup>29</sup> : pile-up, signal overlap and radiation damage (400 Gy/day)
- Bunch spacing > 150 ns
  - Limit of trigger logic
- p-remnant side only
  - Protons in Beam 1
  - Lead in Beam 2





#### Conclusions

13 TeV p+p analysis on-going (LHCf only)

- Preliminary photon spectrum has been presented
- Neutron analysis is on the way

13 TeV p+p LHCf + ATLAS joint analysis is starting

- Event matching has been successfully verified
- Letter of Intent for p+Pb 2016 has been submitted
  - CERN-LHCC-2016-003 (LHCC-I-027)
  - Half day running at L=10<sup>28</sup> Hz/cm<sup>2</sup> to collect 40000  $\pi^0$  in common with ATLAS
  - Technical issues related to installation and radioprotection have been considered
- Light Ion (LI) future collisions
  - Please keep in mind that LHCf is still interested in running in a possible future p+LI and LI+LI run <sup>(C)</sup>



#### BACKUP



### Determination of beam center

- Exploiting the hit-map of high energy hadrons
- Contribution of UPC: well peaked at 0 deg
- 2D or 1D fit
- Not easy with <u>photons</u>







02/03/2016

LHCf - LHCC Open Session



### Pile-up and signal overlap

| fre v           | 11235,95506 |      | Collision prol | b.senzaUPC | Pile-up witho             | ut U P C      |
|-----------------|-------------|------|----------------|------------|---------------------------|---------------|
| n b u n c h e s | 400         |      | p 0            | 9,9005E-01 | pile-up probability       | 4,9668E-05    |
| sigma QCD       | 2,20E-24    |      | p 1            | 9,9005E-03 | pile-up fraction          | 0,00499       |
| sigma UPC       | 5,50E-25    |      | p 2            | 4,9502E-05 | Pile-up with              | UPC           |
| L               | 2,00E+28    |      | р 3            | 1,6501E-07 | pile-up probability       | 7,4270E-05    |
| m u             | 0,00979     | 0,01 |                |            | pile-up fraction          | 0,00611       |
| m u con UPC     | 0,0122375   |      | Collision pro  | ob.con UPC |                           |               |
| accettanza      | 0,163       |      | p 0            | 9,8784E-01 | SIG N A L O V E R L A P w | ithout UPC    |
| accettanza con  | 0,326       |      | p 1            | 1,2089E-02 | Overlap in case of 2 a    | dditionalb.c. |
|                 |             |      | p 2            | 7,3967E-05 | overlap prob.             | 0,00324       |
|                 |             |      | р 3            | 3,0173E-07 | Overlap in case of 3 a    | dditionalb.c. |
|                 |             |      |                |            | overlap prob.             | 0,00486       |
|                 |             |      | prob.good      | 0,00162    |                           | _             |
|                 |             |      | prob.bad       | 0,00001    | SIG N A L O V E R L A P   | with UPC      |
|                 |             |      | pbad/pgood     | 0,00352    | Overlap in case of 2 a    | dditionalb.c. |
|                 |             |      |                |            | overlap prob.             | 0,00791       |
|                 |             |      |                |            | Overlap in case of 3 a    | dditionalb.c. |
|                 |             |      |                |            | overlap prob.             | 0,01185       |



# Minimum physics program

| n.trig | gerQCD          | n.trigger with UPC | acceptance for piO | collision rate QCD      | total LHCf acceptance   | dead time                   |
|--------|-----------------|--------------------|--------------------|-------------------------|-------------------------|-----------------------------|
|        | 3,00E+06        | 6,00E+06           | 0,0133             | 2,20E+04                | 6,60E-02                | 1,50E-03                    |
| n.piO  | e x p e c t e d |                    |                    | LHCfQCD hit rate        | LHCf hit rate with UPC  | LHCf trigger rate           |
|        | 3,99E+04        |                    |                    | 1,45E+03                | 2,90E+03                | 5,42E+02                    |
| Lumi   |                 | sigm a qcd         |                    | ATLAS-LHCf trigger rate | DAQ time LHCf-ATLAS (h) | TOTALDAQ time +20% (h)      |
|        | 1,00E+28        | 2,20E-24           |                    | 400                     | 4,17                    | 5,00                        |
|        |                 |                    |                    | 100                     | 16,67                   | 20,00                       |
|        |                 |                    |                    |                         |                         | TOTAL DAQ (2 positions) (h) |
| R      |                 |                    |                    |                         |                         | 10                          |



#### NEXT SLIDES: neutral pions

- Beam crossing angle = 340 urad
- Upward going beams at IP1
- A distance > 1.5 mm between the impact points of the two photons is required for neutral pion reconstruction



#### Problems with the 2016 "beam flip"



### Visible contributions in the p<sub>t</sub>-x<sub>F</sub> plane





## Upward going beams

- The small tower is "centered" on the beam center
  - Simulation for BCA = 340  $\mu$ rad



### Upward going beams



- The small tower is "centered" on the beam center
  - Simulation for BCA =  $340 \mu rad$







# Upward going beams Tentative solution

- We can somewhat workaround the problem by moving the detector down, but ...
  - The measurement with the small tower on the beam line center remains the most important part, to measure at extreme pseudo-rapidity and to determine the beam line position
  - We loose high-p<sub>t</sub> secondary particles
  - We loose type-I  $\pi^0$ s
  - Not negligible inefficiency in an eventual low duration run

### Upward going beams

- LHCF
- Moving detector down 24 mm (the calorimeter does not cover the beam center anymore)

Invariant mass distrib. of  $\gamma$  pairs (p-remnant side)





### Upward going beams

Moving detector down (the calorimeter does not cover the beam center)



#### LHCT

# Upward going beams

Measurements of neutral pions in a different position





#### Considering small beta\* values...

#### • DPMJET 3.0-6

- Same simulated data analyzed in two different ways:
  - Assuming no angular dispersion
  - Assuming the angular dispersion due to β<sup>\*</sup> = 0.4 m
     → rotating momenta of all secondary particles for each event
- Comparison of p<sub>t</sub> spectra

#### Considering small bSimulated angular distributions





### Single photon pt spectra at different energy





### Single photon pt spectra at different energy



| LHCI |
|------|
|      |

| LHCfre-Installation - Xmas TS |                                                                                     |               |                           |                                   |                             |                             |                         |
|-------------------------------|-------------------------------------------------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------|-----------------------------|-------------------------|
|                               | Operation                                                                           | Time<br>(min) | Required<br>Personnel     | Position                          | Individual<br>Dose<br>(mSv) | Collective<br>Dose<br>(mSv) |                         |
| -2                            | Bring downstairs<br>the detectors and<br>the tooling needed<br>for the installation | 10            | 2 physicists<br>from LHCf | PM15-> UL16                       | 0                           | 0                           |                         |
| -1                            | Bring downstairs<br>electrical cupboard,<br>camera and desktop                      | 20            | 2 operators<br>from EN/HE | PM15-> UL16                       | 0                           | 0                           | LTH                     |
| 0                             | Radiation Survey                                                                    | 15            | 1 technician<br>DGS/RP    | UJ16/TAN                          | 13                          | 13                          | 3X Me                   |
| 1                             | Prepare/check mini-<br>cranes for operation                                         | 45            | 2 operators<br>from EN/HE | TAN and between TAN<br>and UJ16   | 6                           | 12                          | eting                   |
| 2                             | Bring the shielding<br>box                                                          | 10            | 2 operators<br>from EN/HE | Bunker in UJ17 ->TAN              | 0                           | 0                           | Sept                    |
| 3                             | Bring the detector<br>to the TAN                                                    | 5             | 2 physicists<br>from LHCf | UJ17 -> TAN                       | 0                           | 0                           | ember                   |
| 4                             | Remove Cu bar and<br>place it in the<br>appropriate<br>shielding box                | 10            | 2 operators<br>from EN/HE | UJ16<br>Behind the shielding wall | 0                           | 0                           | · 13 <sup>th</sup> - 2( |
| 5                             | Install detector                                                                    | 10            | 2 operators<br>from EN/HE | UJ16<br>Behind the shielding wall | 0                           | 0                           | 012                     |
| 6                             | Remove bar<br>shielding box                                                         | 10            | 2 operators<br>from EN/HE | TAN-> bunker in UJ17              | 0                           | 0                           |                         |
| 7                             | Remove electrical<br>cupboard and<br>cameras from TAN                               | 5             | 2 operators<br>from EN/HE | TAN                               | 5                           | 10                          | 9                       |
| 8                             | Bring upstairs<br>electrical cupboard,<br>camera and desktop                        | 20            | 2 operators<br>from EN/HE | UJ16 -> PM15                      | 0                           | 0                           |                         |



| LHCf RE-INSTALLATION – XMAS TS HSE<br>1 week cooling time |                                                  |               |                              |                                                                                                                                                                                                                |                             |                             |                                 |
|-----------------------------------------------------------|--------------------------------------------------|---------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|---------------------------------|
|                                                           | Operation                                        | Time<br>(min) | Required<br>Personnel        | Position                                                                                                                                                                                                       | Individual<br>Dose<br>(mSv) | Collective<br>Dose<br>(mSv) |                                 |
| 9                                                         | Screwing (no fine<br>positioning)                | 15            | 2 physicists<br>from LHCf    | On top of the TAN                                                                                                                                                                                              | 26                          | 52                          |                                 |
| 10                                                        | Installation of the<br>Front Counter             | 10            | 2 physicists<br>from LHCf    | On top of the TAN and<br>behind it on the footbridge                                                                                                                                                           | 18                          | 36                          |                                 |
| 11                                                        | Cabling for preamp<br>and FC                     | 5             | 2 physicists<br>from LHCf    | On top of the TAN and<br>behind it on the footbridge                                                                                                                                                           | 9                           | 18                          | LTEX                            |
| 12                                                        | Additional cabling<br>for the electronics<br>box | 10            | 2 physicists<br>from LHCf    | On top and side of the TAN                                                                                                                                                                                     | 18                          | 36                          | Meetii                          |
| 13                                                        | Survey                                           | 4 h           | 2 technicians<br>from BE/ABP | Around the TAN region                                                                                                                                                                                          | 62                          | 124                         | ng, Se                          |
| 14                                                        | Electronics<br>commissioning                     | (8 h)<br>60   | 2 physicists<br>from LHCf    | This test is performed<br>from USA15. In case of<br>problems 2 physicists from<br>LHCf will have to work on<br>top of the TAN for a<br>period which depends on<br>the kind of problem<br>(typically 15-60 min) | 105                         | 210                         | ptember 13 <sup>th</sup> - 2011 |
| 15                                                        | Mechanical<br>commissioning<br>(manipulator)     | (8 h)<br>30   | 2 physicists<br>from LHCf    | Test performed mainly<br>from USA15. One physicist<br>is required to stay on top<br>of the TAN for 30 minutes<br>maximum                                                                                       | 27                          | 54                          | 2                               |
| 16                                                        | Bring back detector<br>shielding boxes           | 10            | 1 physicists<br>from LHCf    | TAN->PM15                                                                                                                                                                                                      | 0                           | 0                           | 10                              |
| 17                                                        | Exit the zone                                    | 10            | 2 physicists<br>from LHCf    | TAN->PM15                                                                                                                                                                                                      | 0                           | 0                           |                                 |





HSE Occupational Health & Safety and Environmental Protection Unit

#### Summarizing ( 1 week cooling time :):

| <b>Concerned Person</b>              | Individual Dose (mSv) |
|--------------------------------------|-----------------------|
| 1 <sup>st</sup> LHCf physicist       | 158                   |
| 2 <sup>nd</sup> LHCf physicist       | 98                    |
| 3 <sup>rd</sup> LHCf physicist       | 150                   |
| DGS/RP technician                    | 13                    |
| $1^{st}$ operator from EN/HE         | 11                    |
| 2 <sup>nd</sup> operator from EN/HE  | 11                    |
| 1 <sup>st</sup> operator from BE/ABP | 62                    |
| 2 <sup>nd</sup> operator from BE/ABP | 62                    |
| <b>Collective Dose</b>               | 565mSv                |

- The estimated dose are done considering the maximum dose rate at the position of the worker (TAN aisle, TAN top or side on contact).
  - The individual dose for two of the LHCf physicists falls into the ALARA level II.
  - Collective dose falls into ALARA level II.

LTEX Meeting, September 13<sup>th</sup> - 2012

#### LHC

# BRIEF HISTORY OF LHCf

 May 2004 LOI
 Feb 2006 TDR
 June 2006 LHCC approved
 June 2006 LHCC for the state of t

Dec 2009 - Jul 2010 0.9TeV & 7TeV pp, detector removal





Dec 2012 - Feb 2013 5.02 TeV/n pPb & 2.76TeV pp (Arm2 only), detector removal

- 2013-2015 detector upgrade
- Several test beams



Jan 2008

#### May - June 2015 13 TeV pp (dedicated run), detector removal

LHCf - LHCC Open Session

•

# An impressive high energy p<sup>o</sup>







#### Inclusive photon spectra (900 GeV pp)





#### Inclusive photon spectra (7 TeV pp)



- No model can reproduce the LHCf data perfectly.
- **DPMJET** and **PYTHIA** are in good agreement at high- $\eta$  for E<sub>v</sub><1.5TeV, but harder in E>1.5TeV.
- QGSJET and SIBYLL shows reasonable agreement of shapes in high-η but not in low-η
- EPOS has less η dependency against the LHCf data.



LHCf-Arm1 vs=7TeV, Ldt=2.53nb

400 - 9.0 < y < 9.2

100

120

140

160

MeV)

200 E

100

# $\pi^0$ cross section (7 TeV pp)



Identification of events with two particles hitting the two towers

- EPOS1.99 show the best agreement with data in the models.
- **DPMJET** and **PYTHIA** have harder spectra than data ("popcorn model")
- QGSJET has softer spectrum than data (only one quark exchange is allowed)

02/03/2016



Reconstruction of the

invariant mass of

two-photon events

#### LHCf - LHCC Open Session



### Inclusive neutron spectra (7 TeV pp)

