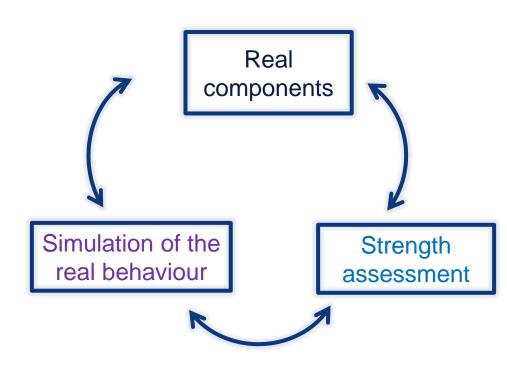
Review of Cavity Load Cases and relevant analysis

L. Dassa and C. Zanoni feat. N. Kuder 08/02/2016

General (1)

Lifecycle

Cavity production


- forming process
- plastic tuning (not confirmed)

Cavity assembly with He tank

welding process

Cavity operation Loads:

- Pressure
- Weight
- ΔT during cool-down
- $T \neq 300 \text{ K} \rightarrow \text{differential contraction}$
- Coarse tuning displacement
- Fine tuning displacement

Cavity production

- forming process
- plastic tuning (TBC)

Cavity assembly with He tank

• welding process with He tank

FEM

- FEA on forming → explicit analysis → evaluate shape after forming, spring-back, residual ductility, plastic strain
- FEA → non linear, implicit or explicit → evaluate shape after tuning, plastic strain

FEM

 FEA → plastic model → evaluate the behaviour of the cavity, plasticized areas, stress distribution, simulation of the entire cycle?

Cavity operation

FEM

- Guidelines can be extracted from standards
- Linear or non-linear model are acceptable
- Validate the design

Tuning

General (3)

Preliminary coarse plastic tuning (TBC)
 could be considered as the last step of the forming process

Coarse elastic tuning

 <u>Applied with all the other operational loads</u> → guidelines from standard are acceptable

Coarse additional plastic tuning

 Applied with all the other operational loads → guidelines from standard are acceptable

• Fine tuning

 <u>Applied with all the other operational loads</u> → guidelines from standard are acceptable

Dressed cavity strength assessment according to EN 13445 (stress categories)

Which loads? Which geometry? Which material properties? History of material processing during forming and assembling?

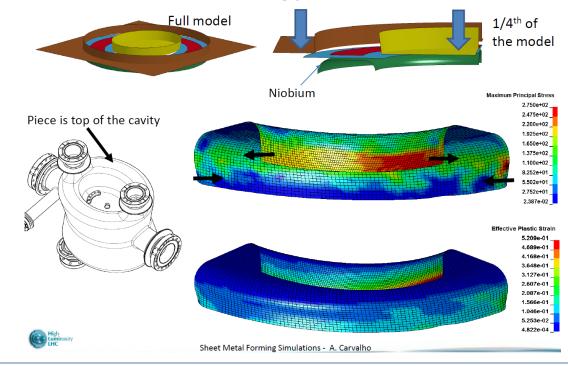
Remember that it is not possible to simulate everything!!!

We need some assumptions.

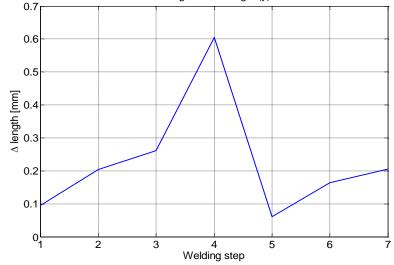
Lifecycle steps (1)

	Welding	Cool Down [300 K]	Cool Down [300 K → 2 K]	Operations [2 K]
Weld deformation	X			
Pressure [1.8 bara]		X	X	
Pre-tuning (elastic)		X	X	X
Weight		X	X	X
Fine tuning				X
ΔΤ		Х?	X	
$\Delta \alpha_{T}$			X	X
EP = elastoplastic EL = elastic	 EP Cavity 	 EL + bolts + friction Cavity + Tuner + Tank EP submodel of tuner interface 		 EL Cavity + Tuner + Tank

Lifecycle steps (2)


	Welding	Cool Down [300 K]	Cool Down [300 K \rightarrow 2 K]	Operations [2 K]
Weld deformation	X •			
Pressure [1.8 bara]	uncouple	d X	X	
Pre-tuning (elastic)		X	X	X
Weight		X	X	X
Fine tuning				X
ΔΤ		Х?	X	
$\Delta \alpha_{T}$			X	X
EP = elastoplastic EL = elastic	 EP Cavity 	 EL + bolts + friction Cavity + Tuner + Tank EP submodel of tuner interface 		 EL Cavity + Tuner + Tank

Cavity forming

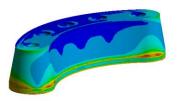

Material	Elasto-plastic analysis
Model	Only cavity / part of cavity
Scope of the analysis	Simulation: forming process study and parameters, spring-back effect, plastic strain
Assumptions	Ref. Marco and Alexander

First simulations of forming process for DQW

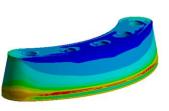
Material	Elasto-plastic analysis	Lifecycle step B
Model	Only cavity	\//olding to the
Scope of the analysis	Strength assessment / simulation?	Welding to the tank
Assumptions	Non linear material model, but not strain hardened (conservative)	
	OPTION 1: after welding tank deformation returns to $0 \rightarrow$ no impact on the following steps	
OPTION 2: residual tank deformation \rightarrow residual load acting on cavity/tank \rightarrow stress \rightarrow linear analysis with stress categories \rightarrow linear superposition??		
0.7	change in tank length (y)	

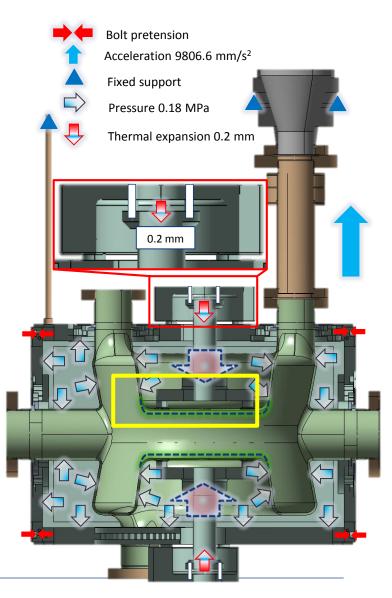
Cool Down [300 K]

Material	Elastic analysis	
Model	Cavity + Tuner + Tank + bolts model + friction	Bolt pretension Acceleration 9806.6 mm/s ² Fixed support Pressure 0.18 MPa Thermal expansion 0.2 mm
Scope of the analysis	Strength assessment: linear elastic	
Assumptions	Material not strain hardened, at room T \rightarrow conservative assumption	
	deformation and stress levels are not real	



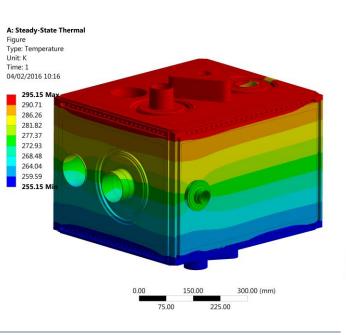
..............


Lifecycle step C (2)


Cool Down [300 K], submodel

Material	Elasto-plastic analysis of peak areas
Model	(submodelling)
Scope of the analysis	Local strength assessment (waiver to the general approach)
Assumptions	Material not strain hardened, at room T \rightarrow conservative assumption
	deformation and stress levels are not real

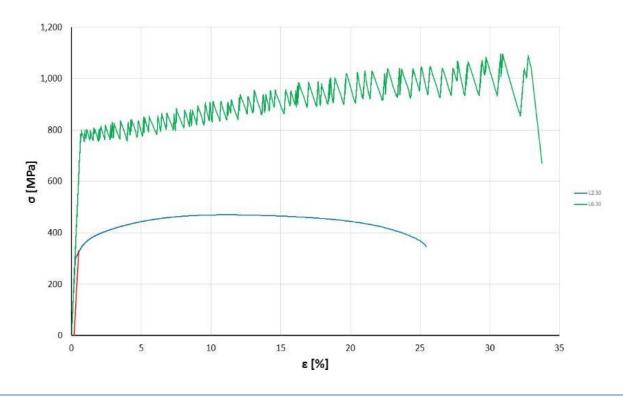
Work in progress...



Lifecycle step D

LC 3: Cool Down [300 K \rightarrow 2 K]

Material	Elastic analysis
Model	Cavity + Tuner + Tank
Scope of the analysis	Simulation Rough calculation in order to get the order of magnitude, which is expected to be <i>small</i> with respect to pressure
Assumptions	no bolts (bonded) Worst-case: $\Delta T = 40$ K (applied between bottom and top plate of the tank) - Hard to estimate <u>deformation and stress levels</u> <u>are not real</u>



Y

ANSYS

Operations [2 K]

Material	NA
Model	NA
Scope of the analysis	Strength assessment
Assumptions	less critical because material properties at cold are improved a lot

Conclusions

Strength assessment

- Clarify tuning loads
- effects on the cavity due to the welding process? to be considered or not in the strength assessment?
- In principle... as done up to know it is acceptable, with some minor correction (fine tuning,...)

FEA analysis

- EP analysis of cavity + tuner + tank, with bolts and friction is NOT feasible (possible solution: no friction and no bolts)
- The real behaviour of the cavity (plasticization and similar) can be studied but it is not related with the strength assessment.

Material properties

Comparison should be done between material before forming and after forming

General (2)

Just a reminder

Pressure ONLY Stress due to pre-tuning (secondary stress) not present ONLY primary stress

Cavity production

- forming process
- plastic tuning (not confirmed)

Cavity assembly with He tank

 welding process with He tank -> partially elastic, partially plastic General (3) Evaluated separately with FEM explicit (?) on bare cavity model. Non linear material model (as close as possible to the real one!) -> end of the process: cavity with no external loads, material with sufficient ductility (at least 30% TO BE CONFIRMED)

Non linear material model (not strain hardened -> conservative assumption) -> elastic perfectly plastic ->

OPTION 1 -> after welding tank deformation returns to 0 -> cycle on the cavity materials -> we assume that some additional plasticization occurs but no impact on the following steps

OPTION 2 -> residual tank deformation -> residual load acting on cavity/tank -> stress -> linear analysis with stress categories -> linear superposition??

end of the process: material with sufficient ductility (at least 30% TO BE CONFIRMED)

General (3)

Cavity operation

- Cavity
- Vessel
- Bolts
- Welded joints
- Bellows

Loads

- Pressure
- Weight
- Thermal gradient during cool-down
- Cold temperature -> differential contraction
- Additional coarse tuning applied displacement
- Fine tuning applied displacement

Material not strain hardened, at room T -> conservative assumption

Linear elastic model for material (non linearity in contacts) is used -> <u>deformation</u> and stress levels are not real

Some plasticization are can be identified, but the values are not relevant. The stress assessment is based on "semi-empirical" approach

Dressed cavity tuning performances

- Preliminary coarse plastic tuning
- Coarse elastic tuning
- Coarse additional plastic tuning

Fine tuning

Considered in the forming process, not included in the strength assessment

included in the strength assessment

included in the strength assessment The result of the "stress categories" approach gives an idea but not real behaviour If real behaviour is needed -> plastic analysis with real (???) material properties can be performed but IT IS NOT a strength assessment

Today not included in the strength assessment It shall be included in the strength assessment

Conclusions

Strength assessment

 As done up to know is acceptable with some minor correction (fine tuning,...)

FEA analysis

• The real behaviour of the cavity (plasticization and similar) can be studied but it is not related (in principle) with the strength assessment, if assumptions in this document are accepted.

Material properties:

 Comparison should be done between material before forming and after forming

