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Thermal fluctuations:

-

Sound modes in uniform plasma

These hard sound modes are part of the bath, giving to the pressure and shear viscosity
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momentum, g'=T"
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In an expanding system these correlators will be driven out of equilibrium.

This changes the evolution of the slow modes.



A Bjorken expansion
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1. The system has an expansion rate of (%u“ — 1/7’

2. The hydrodynamic expansion parameter is
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and corrections to hydrodynamics are organized in powers of €
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High £ modes are brought to equilibrium by the dissipation and noise



The transition regime:

e There is a wave number where the damping rate competes with the expansion
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damping rate expansion rate
and thus the transition happens for: Yn = 77/(6 + p)
k~ k L dk > k.t h ilibrium!
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e This is an intermediate scale k. = 1/(7+/€), e=n/(e+p)T
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Want to develop a set of hydro-kinetic equations for k ~ k.
using the scale separation € < /€ < 1



Estimate of longitudinal pressure from non-equilibrium modes
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energy / mode number of non-eq modes

e Using e + p = s’ we estimate
AT?? 1 1
e+ p s (y7)3/2

e The full result will be:
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The correction is suppressed by s = the number of degrees of freedom
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EqUIllbrlum Linear Response Kovtun, Yaffe; Kovtun, Moore, Romatschke

- weak gravity of frequency w driving plasma
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out of equilibrium, A% (w)
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Hydro prediction cov-deriv
<T”> = ph* — 77( V! +V7u' — gv : u) + 2nd order
So
1st order 2nd order
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Thermal flucts. are not included, and are driven slightly out of equilibrium for & ~ k.
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Include hard thermal fluctuations with k, ~ \/w /7y, as loops



HYdrO Hard Thermal LOOpS (H HTLS) Kovtun, Yaffe; Kovtun, Moore, Romatschke

Hard ~ k, = , /<

Evaluate the “Hard Hydro Thermal Loop”
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1st order 3/2 order

The correction is of order
1 3
AT*Y ~ §T k* h*Y



Hard HydrO Thermal LOOpS (H HTLS) Kovtun, Yaffe; Kovtun, Moore, Romatschke

Hard ~ k, = \/Z
T

Evaluate the “Hard Hydro Thermal Loop”
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The correction is of order
1 3
ATPY ~ §T k* h*Y

| will follow Uli with hydrodynamics!

(by deriving HHTL loops from hydro Kinetic Theory)



Developing hydro-kinetics — Brownian motion

dp

=& (E0E) = 2T My d(t — V)

1. Then we want to calculate

2. Integrate the equation for short times

t+AL
p(t+ At) = —np(t)At + /t E(t)dt’

3. Compute (p(t + At) p(t + At)) and find an equation
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equilibrium



Developing hydro-kinetics — linearized hydro in a uniform system

1. Evolve fields of linearized hydro with bare parameters po(A), 19(A), so(A) etc

da(k) = (e(k). g7 (k). g (k). g7 (k)

2. Then the equations are schematically exactly the same

d¢?l§k) - Eib@%(k) + Dapdy, +&a (§ap) = 2T Dap(k)5(t — t')
ideal 1st visc

3. Break up the equations into eigen modes of L3, and analyze exactly same way:

right moving sound left moving sound two diffusion modes
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A = +icgk A_ = —icgk— Ar =0
So for k in the z direction, work with the following linear combos (eigenvects)

A = {cse(k) +g%(k) , g°(k) , g% (k)
¢ > ARSI
¢-|— and ¢— = ¢T1 = ¢T2




The kinetic equations in flat space

1. The relevant correlators are e.qg.

Nyy(k,t) = (05 (k)p+ (k)  Npyr, = (7, (k)¢r, (K))

2. Thus
dN
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and similar equations for N__ and Nr,r,. Here
Nyl =(e+p)T  and N{L =(e+p)T
3. Neglect off diagonal components of density matrix in eigen-basis

dN
+7 —icsk  Nir, <= Rapidly rotating.
dt ~—
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Now we will do the same for a perturbed and expanding system




Case 1: Kinetic equations for perturbed system (HHTLS)
1. Turn on a weak gravitational perturbations, h;; = h(t) diag(1, 1, —2)
O Ny (k) = — 3y,k* [Nyy — NS4 + 9:h (sin® 0 — 2cos” Ox) Ny
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damping perturbation hij]%i];j
2. Solve the equations to first order in the gravitational, e.g.

wwh (sin2 0, — 2 cos> Or)
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3. Calculate the stress tensor

. o d3 zk 7 _k
5TV = (e +p) (v'o) = /(%f; <g<€>g+ ; )

4. Find an HTL like expression
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Precisely reproduces hard hydro loop calculation!

(0T + 6TYY — 26T7%) D h/




Case 2: Kinetic equations for a Bjorken expansion — Hard Hydro Loops (HHLS)

e

e The hydrodynamic field fields ¢, = (cse, g%, g¥, 7g") are:

bu(ri koL 1) = / P / dy R LY g ()

e The equations take the form:

d
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ideal viscous  perturb  noise

The previous analysis goes through with a no complications, A = Ficsk, 0
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The kinetic equations and approach to equilibrium:

e The Kkinetic equations and approach to equilibrium

0 1 k2 /T2 210 K2 soT?
—N :——[2—|—c2—|— ]N — 3 k2 4+ = ) |Npy — —9 1|,
or T T s0 k3 + Kk2/72 T oo U 72 L 22T
perturbation = 2P 1 damping to equilibrium
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or 1212 T [ k_2L + k2 /72 1212 soTp \ + ' 72 121 T
perturbation = 2P, 1, damping to equilibrium
and similar equations for the other modes
e For large k, we solve, and the modes approximately equilibrate:
sng soTo 5 k2 /T2
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2¢50T sno(k? +rk2/m2) \ 7 kT 4 w2/72
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equilibrium first viscous correction analogous to ¢ f

Now we solved these kinetic equations numerically



The non-equilibrium steady state at late times:

N, . / equilibrium

Sound Modes Transverse modes
[ [ [ [ [ 2 [ | | | I I
cos(6)=0.1
1.5 1
enhanced

but integrable

Nt 1,/ equilibrium
[

hydro-kinetics i hydro-kinetics —

VisC. approx -------- Y visc. approx
! ! ! 0 L/ | l ! ! !

0.5 1 1.5 2 2.5 3 0.5 1 15 2 25 3 35 4
k [nt/(e +p)]"2 k /(e +p)]'"



The evolution of the background
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dTTT T’TT + TZZ

dr T

where
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In addition the fluctuations give another contribution:

ffjcts — (6 T p) <vzvz>
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Evaluating the fluctuation contribution:

zz
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Thus the full stress is then: compare Kovtun, Moore, Romatschke
T, A3
T :T}f;dro + Tffjcts Pphys =P0 (A) + 6071'2
4 2
_ 37phys .. . B 17A s, T
=Pphys — “ finite Mphys =1o(A) + (120772 770(/6)

where the physical quantities, pphys and 7)phys, are independent of A

What'’s the finite correction?



Final result for a Bjorken expansion:
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From which much can be wrought or wrung . . .



Numerical results:

Take representative numbers
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while for n/s = 2 /4w we have:
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Fluctuation contribution is a correction to first order hydro

but larger than second order in practice




Summary

1. For wavenumbers of order
e+ p

nT

k ~
the system transitions to equilibrium

2. Worked out an alternate description of hydro with noise:

- Hydro + hydro-kinetics

aﬂ (T}’ibyydro + TflllLlchts) 0

aTNﬂuctS(ka 7-) — ..

This should be generalized to a general flows.

v

3. How is the non-linear Tf’l‘UlCtS imprinted on the particles?

5fﬂucts =7777

4. Fluctuating hydro is much more important than second order hydro in practice!



