

Hydrodynamics: From the highest to the lowest beam energies

Hannah Petersen 19.07.16, ULtra-RelatIvistiCH HEavy IoNZ 2016, CERN, Switzerland

Outline

- Hydrodynamics at LHC:
 - Longitudinal de-correlation of event planes
 - Fluctuating strings
 - v_n as a function of rapidity
- Low beam energies:
 - Viscous hybrid approach
 - SMASH hadron transport
 - Effective N-particle scattering (hydro?)
- Summary and conclusions

Quark gluon plasma in a heavy ion reaction

Hydrodynamics at the LHC

in collaboration with L.-G. Pang, Q.-Y. Qin, V. Roy, X.-N. Wang

Motivation

Single particle distribution from AMPT+hydro for a typical single event at RHIC

- Flow measurements are questionable when the anisotropic flow (or event plane) de-correlates along the longitudinal direction.
- P.Bozek PRC83, 034911 (2011); arXiv:1506.02817 (2015);
- H. Petersen, V. Bhattacharya, S.A. Bass, and C Greiner PRC 84, 054908 (2011)
- L-G. Pang, X-N. Wang and Q. Wang, PRC 86, 024911 (2012);
- K.Xiao, FQ. Wang, F. Liu PRC 87, 011901 (2013)
- J. Jia and P. Huo, PRC 90, 024910 (2014); PRC 90, 034915 (2014)
- L-G.Pang, G-Y.Qin,V.Roy,X-N.Wang, G-L.Ma, PRC 91, 044904 (2015)

Longitudinal structure of QGP

 Gluon density is twisted because of the asymmetric distribution of forward and backward going participants.

J Jia et al, PRC 90, 034915 (2014)

• "Twist" of event planes ->continuous change

Pure fluctuations in longitudinal direction

A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke and R. Venugopalan PLB 706 (2011) 219-224

Y = 5.0

Y = 0.0

- The gluon density fluctuates stronger at large rapidity from CGC
- Random fluctuation of event planes

Model: AMPT + E-B-E (3+1)D hydro

 $T^{\mu\nu}(\tau_0, x, y, \eta_s) = K \sum_i \frac{p_i^{\mu} p_i^{\nu}}{p_i^{\tau}} \times \delta(x - x_i, y - y_i, \eta_s - \eta_{si})$

• Newly developed CLVisc: C++/Python, KT algorithm to solve hydrodynamic equations, parallelized on GPU using OpenCL.

L-G Pang, X-N Wang and Q Wang 2012, PRC

L-G Pang, X-N Wang, B-W Xiao, Y. Hatta, 2015 PRD

Centrality bins

- Linear relationship between the number of partons put in hydro from AMPT and the number of charged hadrons resulting from hydrodynamic evolution
- The number of partons is used to determine centrality bins

Charged multiplicity (LHC)

- Rapidity and transverse momentum dependence of charged particle production agrees nicely with experimental data
- Scaling factor for initial energy density K=1.5 and smearing factor $\sigma_r = \sigma_\eta = 0.6$ for CLVisc EOS s95p-PCE-v0.

Charged multiplicity (RHIC)

• Pseudorapidity range [-4,4] is used for RHIC in the following

• Net baryon density may be needed for 3+1D hydro (EOS with finite μ_B) at forward $\,$ and backward rapidities to describe the data.

Distribution of initial partons

Pb+Pb semi central

 η_s

Comparison to CMS, predictions for RHIC

- De-correlation $r_{\rm 2}$ agrees with CMS perfectly except 0-5% centrality.
- Centrality dependence comes from both FB asymmetry and string length fluctuations.
- RHIC shows much stronger de-correlation which indicates stronger fluctuations at lower collision energies

Compare with CMS, predictions for RHIC

- r₃ has weak centrality dependence
- Nicely reproduced with initial conditions from AMPT

Longitudinal structures AMPT

- String lengths fluctuations increase at RHIC energies
- Insights into particle production mechanism

Rapidity dependence of vn

• Longitudinal fluctuations lead to a slightly better agreement with experimental data at forward rapidity

- With smooth initial conditions the p_T spectra are harder at mid rapidity
- Further calculations with viscosity are work in progress...

Low Beam Energies

in collaboration with Y. Karpenko, D. Oliinychenko and the SMASH team

Lower Beam Energies

• **Dissipative effects** grow at lower energies (hadronic evolution gains importance)

- New results from RHIC beam energy scan expected
- Will be investigated in the future at FAIR
- Two strategies:
 - Adjust existing hybrid approaches to include finite net-baryochemical potential
 - Extend vacuum hadronic transport to higher densities and temperatures
- Small systems pose similar challenges

Interplay of Hydro + Transport

• Contribution of late stage hadronic rescattering ~10%

- v_3/ϵ_3 shows universal behavior as a function of total duration of hydro phase
- $\bullet v_2$ does not follow scaling because of transport contribution

J. Auvinen and HP, Phys.Rev. C88 (2013) 064908

Shear Viscosity and V₃

• Pushing hybrid to lower beam energies:

- Viscous UrQMD hybrid fitted to beam energy scan and SPS data allows to extract shear viscosity
- v₃ predictions in line with CERES measurement

Karpenko, P. Huovinen, HP, M. Bleicher, Phys.Rev. C91 (2015) no.6, 064901

CERES, arXiv:1604.07469

SMASH*

- New hadronic transport approach:
 - Includes all mesons and baryons up to ~2 GeV
 - Geometric collision criterion
 - Binary interactions: Inelastic collisions through resonance excitation and decay
 - Modern infrastructure: C++, Git, Redmine, Doxygen

* Simulating Many Accelerated Strongly-Interacting Hadrons

ULtra-RelatIvistiCH HEavy IoNZ 2016 J. Weil et al, arXiv:1606.06642

Deformed nuclei

• Summer project of A. Goldschmidt: J. Weil et al, arXiv:1606.06642

 Framework for treatment of deformed nuclei developed with U. Heinz

Data comparison

J. Weil et al, arXiv:1606.06642

0.6

0.5

 $y_0 \in [1.05, 1.35], \times 10^7$

 $y_0 \in [0.75, 1.05], \times 10^6$

 $y_0 \in [0.45, 0.75], \times 10^5$

 $y_0 \in [0.15, 0.45], \times 10^4$

 $y_0 \in [-0.15, 0.15], \times 10^3$

 $y_0 \in [-0.45, -0.15], \times 10^2$

 $y_0 \in [-0.75, -0.45], \times 10^{10}$

0.5

 $y_0 \in [0.5, 0.7], \times 10^7$

 $y_0 \in [0.3, 0.5], \times 10^6$

 $y_0 \in [0.1, 0.3], \times 10^5$

 $y_0 \in [-0.1, 0.1], \times 10^4$ $y_0 \in [-0.3, -0.1], \times 10^3$

 $y_0 \in [-0.5, -0.3], \times 10^2$

 $y_0 \in [-0.7, -0.5], \times 10^{-1}$

0.6

0.4

ł

ł

ŧ

0.4

ŧ

0.3

ULtra-RelatIvistiCH HEavy IoNZ 2016

0.7

Effective N-particle scattering

- At higher densities multi-particle scattering becomes important -> here: extreme limit
- Above 0.3 GeV/fm³ local kinetic equilibrium is enforced by replacing the distribution function with a thermal one

• In the future: Dynamical coupling of transport/hydro-like Dmytro Oliinychenko, HP stage Hannah Petersen

Hadron gas EoS

Sample particles conserving all quantum numbers in small volume

Consistent equation of state is necessary

Time evolution

• Au+Au central collision, \sqrt{s} = 3 GeV

High density region exists for a longer period

Temperature and chemical potential

• Time evolution of mean of thermodynamic quantities

• Equilibration by reactions and forced not identical (wiggles)

- -Some particle species cannot be produced in SMASH
- -Resonances are sampled at pole mass

Effects of N-particle collisions

• System does not reach energy densities above $\epsilon_c \sim 1.4 \text{ GeV/fm}^3$

Strangeness is enhanced as expected

Summary

- Fluctuations in the transverse plane have been thoroughly investigated
- Longitudinal structures are interesting as well
 - Interplay of twist effect and pure fluctuations
 - Event-by-event ideal hydrodynamics with AMPT initial conditions describes event plane de-correlation as measured by CMS
 - String length fluctuations **increase** at RHIC energies
 - Viscous hydrodynamic calculations are in progress
- Two strategies at low beam energies:
 - Adapt traditional hybrid approaches
 - Start with vacuum hadron transport (SMASH) and include Nparticle collisions
 - First basic tests look promising
 - Possibility for dynamical coupling of hydrodynamics and transport

Thank you, Uli

Thanks for pushing me/us to write/organize

IOP PUBLISHING

Phys. Scr. 87 (2013) 048001 (5pp)

PHYSICA SCRIPTA

doi:10.1088/0031-8949/87/04/048001

Summary of ECT* Workshop 2012

Initial state fluctuations and final state correlations: status and open questions

Andrew Adare¹, Matthew Luzum^{2,3,4} and Hannah Petersen^{5,6}

¹ Department of Physics, Yale University, New Haven, CT 06520, USA

² Institut de Physique Théorique de Saclay (CNRS URA2306), F-91191 Gif-sur-Yvette, France

³ McGill University, 3600 University Street, Montreal, QC H3A 2TS, Canada

⁴ Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁵ Department of Physics, Duke University, Durham, NC 27708-0305, USA

⁶ Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main, Germany

E-mail: aadare@cern.ch, mluzum@physics.mcgill.ca and petersen@fias.uni-frankfurt.de

Received 21 December 2012 Accepted for publication 21 January 2013 Published 26 February 2013 Online at stacks.iop.org/PhysScr/87/048001

INT Program INT-16-3

Exploring the QCD Phase Diagram through Energy Scans

September 19-October 14, 2016

• and all your support!

Organizers: M. Lisa, H. Petersen, P. Sorensen, V. Koch

Happy Birthday, Uli!

• I wish you many more fun surprise gifts in heavy ion collisions!

Parameter sensitivities

• Au+Au at \sqrt{s} = 3 GeV

 Thermalization period and lattice spacing do not matter for multiplicities

De-correlation of anisotropic flow by CMS

(CMS 2015 ARXIV:1503.01692)

• The short range correlations (jet, resonance decay, Bose-Einstein correlation ...) are removed if the rapidity gap between a and b is bigger than 2.