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Outlook

• Near detector for oscillations 

• Cross-sections

• νe  & νμ fluxes

• Physics requirements

• Options: 

• segmented tracker

• HPTPC

• Liquid Argon
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ND for oscillations 
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• The number of events depends on the cross-section: 

• This is not so critical if we can determine the energy of the 
neutrino, since at the far detector

• and it cancels out in the ratio as function of energy:
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• Since the neutrino energy is not monochromatic, we need to 
determine event by event the energy of the neutrino. 

• This estimation is not perfect, we have the problem that the cross-
section does not cancels out in the ratio. 

• The neutrino oscillations introduce differences in the flux spectrum 
and the ratio does not cancel the cross-sections. 
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Oscillation experiments require to know
Φ(Eν), σ(Eν) & P(Eν|E’ν)
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The oscillations

• Far detector also have several sources of 
backgrounds: 

• wrong sign backgrounds (neutrinos vs. 
antineutrinos). 

• NC interactions populating low energy 
bins. 

• We need to control both backgrounds 
using a near detector. 
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ND for oscillations

• The only tool we have to calibrate all these 
parameters is with a near detector using 
neutrino interactions. 

• Cross-sections are the key to this problem. 

• But, also the source of most of our problems. 

• Other alternatives are possible to complement 
the measurement (ν e- scattering).
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Cross-section and flux
• Constrain the flux using the neutrino-electron scattering: 

• νμ e- → νμ e- 

• The cross-section is well known: 

• The electron energy can constrain both absolute flux and the energy dependency. 
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It requires large mass and good discrimination against  νe  backgrounds

(-)(-)

No direct distinction between neutrinos and antineutrinos.
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Neutrino interactions 
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correlations

Fermi motion
&

Pauli blocking 

Not well 
defined!
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Neutrino interactions
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CCQE ⌫µn ! µ�p

CC1⇡ ⌫µp ! µ��++ ! µ�⇡+p

⌫µn ! µ��+ ! µ�⇡+n

⌫µn ! µ��+ ! µ�⇡0p

CCN⇡ ⌫µN ! µ��+,++ ! µ�N 0⇡⇡...

CCDis ⌫µN ! µ�N 0⇡,⇡, ...

at the nucleon level ! 

FSI adds/removes π and nucleons mixing 
the interaction channels
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The xsec problem
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Present and future oscillation experiments cover a comples region 
full of reaction thresholds and sparse data.
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J.A.Formaggio, G.P.Zeller, Rev.Mod.Phys. 84 (2012) 1307 
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ND for oscillations
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How to measure the neutrino energy ? 

Low Energy ν’s  (≲2GeV)

• Eν relies on the lepton kinematics.

• channel identification is critical:

• Final State Interactions

•  hadron kinematics.

• Fermi momentum,  Pauli blocking 
and bound energy are relevant 
contributions.

Medium-high Energy  ν’s (≳ 3GeV)

• Eν = El + Ehadrons  with Ehadrons << El

• Hadronic energy depends on 
modelling of DIS and high mass 
resonances. 

• Hadronic energy depends on Final 
State Interactions and detector 
response.

νμ

A

μ±

Hadrons

P(Eν|E’ν)
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ND for oscillations
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• Only a fraction of the energy is 
visible.

• Rely on channel interaction id. 

• The visible energy is altered by 
the hadronic interactions and it 
depends on hadron nature. 



F.Sánchez, European Neutrino Meeting LBNF/DUNE 
7th April 2016

ND for oscillations
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• Simple exercise:

• Take all particles predicted by Neut 
outside the nucleus and sum the 
kinetic energy (including neutrons!). 

• Plot the relative energy deviation ( Eμ
+Ehad-Eν)/Eν for different channels. 

• The response depends on the channel 
and the topology of events outside 
the nucleus. 

• This is too simple because it is not clear 
that Neut includes all possible energy 
balances in the equation. 

• Part of the pion mass can be recovered 
through its decay. 

• Are the neutrino interaction models ready 
for this type of analysis? 

π masses

π masses

Λ,K masses
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ND for oscillations

• P(Eν|E’ν) is the critical point on the above formula. It 
implies several issues: 

• BIAS:  The validity of the reconstruction assumption  
for the right topology of the event.  

• BACKGROUND:  The error when the formula is 
applied to the wrong event.

• ENERGY SCALE AND EXPERIMENTAL BIAS: 
Difference between the near and the far detector and 
absolute scale.
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Similar near and far detector technology is a plus.
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ND for oscillations
• Obviously, we can’t make the ND the same size as the far 

detector:   

• The hermeticity of the detector will be different for neutrons 
electrons and gammas. 

• Low energy gamma’s from π0 critical!

• The momentum of long range particles need to be estimated 
in different ways: 

• FD: range for muons/pions and energy for electromagnetic 
energy. 

• ND: range/curvature/energy depending on the particle and 
the range.

• This will affect the reconstruction criteria and energy 
reconstruction depending in hadronic secondary interactions. 
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ND for oscillations
• Secondary interactions are also critical: 

• Hadronic particles leaving the nucleus are affected by hadronic 
interactions similar to the FSI. 

• Those cross-sections are not well known for low energy (< GeV) pions 
and nucleons. 

•  Data is even more sparse in Argon. 
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➜ ProtoDune 
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ND for oscillations
• The nuclear target alters the cross-section: 

• Number of nuclei ( ~A ) 

• Fermi momentum change probabilities close to 
reaction thresholds. 

• Pauli blocking inhibits interactions. 

• Final State Interactions does not have a simple 
dependency with A.
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It is recommended that near and far detector are 
made of the same nuclei.
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ND for oscillations
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• If (AccFD ⊆ AccND), the acceptance is not a problem. 

• If (AccFD ⊇ AccND), there are two potential issues: 

• The total cross-section extrapolation from the accepted 
events in the near detector to the far detector is model 
dependent. 

• And models are poor!!!! 

• For the same topologies, P(E|E´) might depend on the event 
properties: 

• Large vs small hadronic energy (Ehad)

• …
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ND for oscillations
• The νe appearance has two additional issues: 

• Near Φ(Eν)xσ(Eν) is computed for νμ but far detector is for 

νe. This implies that we need to compute or model: 

• σe(Eν)/σμ(Eν) for neutrinos and anti-neutrinos. 

• Additional model of P(Eν|E’ν) and energy scale. 

• Control the π0 background in the electron sample.

• There is also the intrinsic beam νe background to be 
constrained. 
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 Excellent e/μ/π0 separation.
 Large statistics: masive near detector / large flux !

 Enhanced electron sample (off-axis ? ) 
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ND for oscillations
• CP violation also requires the separation of 

neutrinos and antineutrinos. 

• neutrino beam is normally very pure. 

• anti-neutrino beam has large 
contribution of neutrinos: 

• antineutrino cross-section and 
production yield is low. 

• FD has some capability to distinguish 
neutrinos from antineutrinos (i.e. neutron 
production in CCQE). 

• ND has to be able to measure the 
neutrino background in the antineutrino 
beam  → Magnetised detector.
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PoS EPS-HEP2015 (2015) 047 

δCP = 0
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Cross-section and flux
• Resolving the three components in Φ(Eν)xσ(Eν)x P(Eν|E’ν) is 

complex:   

• Need to improve on cross-section models: 

• dedicated experiment? 

• electron scattering? 

• but also strong theoretical support.  

• Have the possibility of change Φ(Eν) in the experiment or 
with other experiments. 

• Start with an excellent prediction for Φ(Eν) (external pA 
experiments like Shine)
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Physics requirements
• The perfect ND detector has: 
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Same/better acceptance as far detector

Same nuclear target

Same/Similar technology

Excellent e/μ/π0 discrimination

Large mass

Good control on external backgrounds

Excellent purity for νμ e- scattering samples

Excellent charge separation for neutrino vs antineutrino
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Options

• There are three options for ND: 

• Segmented tracker. 

• LiqAr TPC. 

• HPTPC 

• But, there is no reason why there should be 
only one detector.  Neutrino beams are 
very “democratic”. 
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Segmented tracker

• Magnetised (0.4T) high resolution straw 
tube design “a la” Nomad with plannar 
geometry. 

• Target/Nucleus selection by track 
vertexing. 

• Low density for low E particle 
detection. 

• ECAL gamma catcher and muon range 
detector. 
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LiqAr TPC

• Magnetised (?)  LiqAr 
detector. 

• Same technology as FD. 

• Large mass. 

• Balance pile-up / range. 

• ECAL and muon range.
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HPTPC
• Magnetised High Pressure 

TPC. 

• Low mass. 

• Very low momentum 
threshold. 

• Same target as far 
detector / similar 
technology.

• Inner/Outer mass balance. 

• ECAL and muon range.
26
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Conclusions

• The dominant errors in the oscillation analysis depends on the 
knowledge of the flux and neutrino conclusions. 

• ND has a broad program of physics beyond oscillation physics related to 
neutrino-nucleus cross-sections. 

• The ND is the place to reduce these systematics to the minimum: 

• the “battle” of precision will take place at ND if mass and power is 
available. 

• The requirements on the ND design are very stringent. 

• Proper degin of the ND is clue for the success of the DUNE 
program. 
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Conclusions

• The language to describe the ND to FD flux extrapolation and analyse 
the FD data is neutrino interactions. We need to speak it properly not 
be “lost in translation”. 

• It is likely that the ND program needs to be complemented by external 
experiments (electron scattering, hadroproduction,dedicated cross-
sections),  test-beams and giving strong support to the nuclear theory 
community. 

• The three proposed options have pros and cons (I did not enter into the 
discussion) but we need to keep in mind that the right answer might be 
to have two detectors and not only one. 
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