DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE: Physics Highlights

Mark Thomson University of Cambridge & co-spokesperson of DUNE CERN: 7th April 2016

1: Neutrino Physics - Context

The Standard 3-Flavour Paradigm

★ Unitary PNMS matrix → mixing described by:

- three "Euler angles": $(\theta_{12}, \theta_{13}, \theta_{23})$
- and one complex phase: δ_{τ}

$$U_{\text{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with
$$s_{ij} = \sin \theta_{ij}$$
; $c_{ij} = \cos \theta_{ij}$

- ★ If $\delta \neq \{0, \pi\}$ then SM leptonic sector \Rightarrow CP violation (CPV)
 - CPV effects $\propto \sin \theta_{13}$
 - now know that θ_{13} is <u>relatively large</u>

 \blacktriangleright CPV is observable with conventional ν beams

LBNF/DUNE Hyper-Kamiokande

The Known Unknowns

- ***** We now know a lot about the neutrino sector
- **★** But still many profound questions
 - Why are neutrino masses so small ?
 - Is there a connection to the GUT scale?
 - Are there **light** sterile neutrino states ?
 - No clear theoretical guidance on mass scale, M_R, ...
 - What is the neutrino mass hierarchy ?
 - An important question in flavor physics, e.g. CKM vs. PNMS

- Is CP violated in the leptonic sector ?
 - Are vs key to understanding the matter-antimatter asymmetry?

The Known Unknowns

***** We now know a lot about the neutrino sector

DUNE can address three of these questions + more

- Why are neutrino masses so small ?
 - Is there a connection to the GUT scale?
- Are there light sterile neutrino states ? ——>
 - No clear theoretical guidance on mass scale, M, ...

What is the neutrino mass hierarchy ?

• An important question in flavor physics, e.g. CKM vs. PNMS

- Is CP violated in the leptonic sector ?
 - Are vs key to understanding the matter-antimatter asymmetry?

Breaks 3-flavor

The Key Question (my personal bias)

Is CP violated in the neutrino sector ?

- **the answer is YES the answer is YES**
 - If yes, would provide support* for the hypothesis of Leptogenesis as the mechanism for generating the matter-antimatter asymmetry in the universe
- Strong motivation to aim for a definitive observation for CPV in the v sector
 - Ideally want "precise" measurement of CP phase

*not proof, since still need to connect low-scale v CPV physics to the high-scale N CPV physics

2: How to Detect CPV with vs

Matter Effects

 \star Even in the absence of CPV

$$P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \neq 0$$

Neutrinos travel through material that is not CP symmetric, i.e. matter not antimatter

★ Complicates the simple picture !!!!

$$P(v_{\mu} \rightarrow v_{e}) - P(\bar{v}_{\mu} \rightarrow \bar{v}_{e}) =$$

$$ME \left[\frac{16A}{\Delta m_{31}^{2}} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E} \right) c_{13}^{2} s_{13}^{2} s_{23}^{2} (1 - 2s_{13}^{2}) \right]$$

$$ME \left[-\frac{2AL}{E} \sin \left(\frac{\Delta m_{31}^{2} L}{4E} \right) c_{13}^{2} s_{13}^{2} s_{23}^{2} (1 - 2s_{13}^{2}) \right]$$

$$CPV \left[-8 \frac{\Delta m_{21}^{2} L}{2E} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E} \right) \sin \delta \right] s_{13} c_{13}^{2} c_{23} s_{23} c_{12} s_{12} \right]$$

$$with A = 2\sqrt{2}G_{F}n_{e}E = 7.6 \times 10^{-5} eV^{2} \cdot \frac{\rho}{g cm^{-3}} \cdot \frac{E}{GeV}$$

$$09/03/2016 \text{ Mark Thomson IDUNE}$$

Matter Effects

★ Even in the absence of CPV

$$P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \neq 0$$

Neutrinos travel through material that is not CP symmetric, i.e. matter not antimatter

★ Complicates the simple picture !!!! $P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) =$ What we measure ME $\frac{16A}{\Delta m_{21}^2} \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) c_{13}^2 s_{13}^2 s_{23}^2 (1 - 2s_{13}^2) \leftarrow$ Small $-\frac{2AL}{E}\sin\left(\frac{\Delta m_{31}^2 L}{4E}\right)c_{13}^2 s_{13}^2 s_{23}^2 (1-2s_{13}^2) \longleftarrow$ Proportional to L ME CPV $-8\frac{\Delta m_{21}^2 L}{2E}\sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)\sin\delta \cdot s_{13}c_{13}^2c_{23}s_{23}c_{12}s_{12}$ - What we want with $A = 2\sqrt{2}G_{\rm F}n_{\rm e}E = 7.6 \times 10^{-5} {\rm eV}^2 \cdot \frac{\rho}{{\rm g\,cm^{-3}}} \cdot \frac{E}{{\rm GeV}}$ UNIVERSITY OF CAMBRIDGE 9 Mark Thomson | DUNE 09/03/2016

EXPERIMENTAL Strategy

★ Keep L small (~200 km): so that matter effects are insignificant

• First oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\nu} < 1 \, \text{GeV}$$

• Since $\sigma \propto E_{\nu}$ need a high flux at oscillation maximum \Rightarrow Off-axis beam: narrow range of neutrino energies

OR:

★ Make L large (>1000 km): measure the matter effects (i.e. MH)

• First oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\nu} > 2 \,\mathrm{GeV}$$

Unfold CPV from Matter Effects through E dependence
 On-axis beam: wide range of neutrino energies

Experimental Strategy EITHER:

★ Keep L small (~200 km): so that matter effort re insignificant

r-Kamiokande First oscillation maximum: $\Delta m_{31}^2 L$ 4Ea nigh flux at oscillation maximum Since am: narrow range of neutrino energies OR: ★ Make L large (>1000 km): measure atter effects (i.e. MH) First oscillation maxim $\Delta m_{31}^2 L$ 4E**Unfold CPV fron** hrough E dependence On-axis bean range of neutrino energies

3. DUNE Science Strategy

Unprecedented precision utilizing a massive Liquid Argon TPC

DUNE Primary Science Program

Focus on fundamental open questions in particle physics and astroparticle physics:

1) Neutrino Oscillation Physics

- Precision Oscillation Physics:
 - e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm
- 2) Nucleon Decay
 - e.g. targeting SUSY-favored modes, $p \rightarrow K^+ \overline{\nu}$
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

DUNE Primary Science Program

be maior discoveries Focus on fundamental open questions in partic physics and astroparticle physics:

- **1) Neutrino Oscillation Physics**
 - **Discover CP Violation in the**
 - leptonic sector
 - Mass Hierarchy
 - **Precision Osci**
 - e.g. par
 - INO cav fing SUSY-favored modes, $p \rightarrow K^+ \overline{\nu}$
- upernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

 $\Rightarrow \Delta m_{12}^2$

 $|\Delta m_{32}^2|$

DUNE Ancillary Science Program

Enabled by the intense LBNF beam and the DUNE near and far detectors

- Other neutrino oscillation physics with BSM sensitivity
 - Neutrino non-standard interactions (NSIs)
 - Sterile Neutrinos at the near and far sites
 - Measurements of tau neutrino appearance
- Oscillation physics with atmospheric neutrinos
- Neutrino Physics in the near detector
 - Neutrino cross section measurements
 - Studies of nuclear effects, FSI etc.
 - Measurements of the structure of nucleons
 - Neutrino-based measurements of $sin^2\theta_W$

Search for signatures of Dark Matter

Benefit from wide band beam

> 100M neutrino interactions in a few years of operation

4: DUNE Neutrino Oscillations

Neutrino Oscillations

Measure neutrino spectra at 1300 km in a wide-band beam

~ DUNE beam coverage

LBNF beam covers first and second oscillation maxima
 CP dependence varies with energy

Sensitivities based on...

Far detector: 40-kt LAr-TPC

For more details refer to DUNE CDR

 Assumed systematics uncertainties including Near Detector data: Multi-purpose high-resolution detector

For more details refer to DUNE CDR

 Beam and detector staging project plan based on expected funding profile

DUNE Oscillation Strategy

Measure neutrino spectra at 1300 km in a wide-band beam

- Determine MH and θ_{23} octant, probe CPV, test 3-flavor paradigm and search for BSM effects (e.g. NSI) in a single experiment
 - Long baseline:
 - Matter effects are large ~ 40%
 - Wide-band beam:
 - Measure ν_e appearance and ν_μ disappearance over range of energies
 - MH & CPV effects are separable

E ~ few GeV

Separating MH & CPV

DUNE: Determine MH and probe CPV in a single experiment

$\mathcal{A} = P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) = \mathcal{A}_{CP} + \mathcal{A}_{Matter}$ Recall:

with different energy dependence

Separating MH & CPV

DUNE: Determine MH and probe CPV in a single experiment

Recall: $\mathcal{A} = P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \mathcal{A}_{CP} + \mathcal{A}_{Matter}$

with different energy dependence

UNIVERSITY OF CAMBRIDGE

MH Sensitivity

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Details of beam spectrum, ...

MH Sensitivity

- **★** Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ

MH and CPV Sensitivities

- ★ Sensitivities depend on multiple factors:
 - Other parameters, e.g. δ
 - Details of beam spectrum, ...

MH and CPV Sensitivities

- **★** Sensitivities depend on multiple factors:

Beyond discovery: measurement of δ
* CPV "coverage" is just one way of looking at sensitivity...
* Can also express in terms of the uncertainty on δ

Timescales: year zero = 2026

Rapidly reach scientifically interesting sensitivities:

- e.g. in best-case scenario for Mass Hierarchy :
 - Reach 5σ MH sensitivity with 20 kt.MW.year

~3-4 years

~6-7 years

- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$) :
 - Reach 3σ CPV sensitivity with 60 kt.MW.year

Strong evidence

- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$) :
 - Reach 5σ CPV sensitivity with 210 kt.MW.year

Discovery

★ Genuine potential for early physics discovery

Other oscillation measurements...

★ e.g. resolution of θ_{23} octant

NOTE: in a wide-band beam, determine many parameters in a single experiment

+ precision test of 3-flavour paradigm

5. Proton Decay

5. Proton Decay

Nucleon (proton) decay is expected in most new physics models – not yet observed

- Image particles from a single nucleon decay in detector volume
 - For example, look for kaons (from dE/dx) from SUSY-inspired GUT p-decay modes such as $p\to K^+\overline{\nu}$

Proton Decay

Nucleon (proton) decay is expected in most new physics models – not yet observed

- Image particles from a single nucleon decay in detector volume
 - For example, look for kaons (from dE/dx) from SUSY-inspired GUT p-decay modes such as $p\to K^+\overline{\nu}$

Clean signature in LAr

Proton Decay

Nucleon (proton) decay is expected in most new physics models – not yet observed

- Image particles from a single nucleon decay in detector volume
 - For example, look for kaons (from dE/dx) from SUSY-inspired GUT p-decay modes such as $p\to K^+\overline{\nu}$

Clean signature in LAr

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p ightarrow K^+ \overline{ u}$	19%	4	97%	1
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2
$p ightarrow K^+ \mu^- \pi^+$			97%	1
$n ightarrow K^+ e^-$	10%	3	96%	< 2
$n ightarrow e^+ \pi^-$	19%	2	44%	0.8

Mt.yr

Proton Decay

★ The clean signatures for kaon modes

Highly competitive measurements with larger water Cherenkov detectors

6. Supernova vs

Supernova vs

A core collapse supernova produces an incredibly intense burst of neutrinos

- Measure energies and times of neutrinos from galactic supernova bursts
 - In argon (uniquely) the largest sensitivity is to $\nu_{\rm e}$

$$v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$

~3000 interactions @ 10 kpc

Channel	Events "Livermore" model
$\nu_e + {}^{40} \operatorname{Ar} \rightarrow e^- + {}^{40} \operatorname{K}^*$	2720
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \to e^+ + {}^{40}\operatorname{Cl}^*$	230
$\nu_x + e^- \to \nu_x + e^-$	350
Total	3300

Supernova vs

A core collapse supernova produces an incredibly intense burst of neutrinos

- Measure energies and times of neutrinos from galactic supernova bursts
 - In argon (uniquely) the largest sensitivity is to $\nu_{\rm e}$

$$\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$

Coolin

ES

Physics Highlights include:

- Possibility to "see" neutron star formation stage
- Even the potential to see black hole formation !

zation Accretion

7. Scientific Opportunities

Scientific Opportunities

★ For DUNE CDR (July 2015)

- Neutrino Physics sensitivities based on:
 - Detailed physics simulation
 - Well-motivated single particle response
 - "fast" parametric MC

→ some assumptions probably quite conservative

★ For DUNE TDR

- Neutrino Physics sensitivities will be based on:
 - Full physics and detector simulation
 - Full reconstruction
 - Complete MC analysis chain
- Very significant undertaking

major opportunity for additional scientific effort

+ complete survey of DUNE science capabilities

Scientific Opportunities

For DUNE CDR (July 2015)

Sportunities to make major contributions to DUNE science

8. Summary

DUNE Science Summary

DUNE physics:

- Game-changing program in Neutrino Physics
 - Definitive 5σ determination of MH
 - Probe leptonic CPV
 - Precisely test 3-flavour oscillation paradigm
- Potential for major discoveries in astroparticle physics
 - Extend sensitivity to nucleon decay
 - Unique measurements of supernova neutrinos (if one should occur in lifetime of experiment)
- + much more...

Thank you for your attention

Backup Slides

Indicative schedule

Calculating Sensitivies

Determining Physics Sensitivities

For Conceptual Design Report

- Full detector simulation/reconstruction not available
 - See later in talk for plans
- For Far Detector response
 - Use parameterized single-particle response based on achieved/expected performance (with ICARUS and elsewhere)
- Systematic constraints from Near Detector + ...
 - Based on current understanding of cross section/hadro-production uncertainties
 - + Expected constraints from near detector
 - in part, evaluated using fast Monte Carlo

Evaluating DUNE Sensitivities I

Many inputs calculation (implemented in GLoBeS):

- Reference Beam Flux
 - 80 GeV protons
 - 204m x 4m He-filled decay pipe
 - 1.07 MW
 - NuMI-style two horn system
- Optimized Beam Flux
 - Horn system optimized for lower energies
- Expected Detector Performance
 - Based on previous experience (ICARUS, ArgoNEUT, ...)

- Cross sections
 - GENIE 2.8.4
 - CC & NC
 - all (anti)neutrino flavors

Exclusive ν -nucleon cross sections

Evaluating DUNE Sensitivities II

- Assumed* Particle response/thresholds
 - Parameterized detector response for individual final-state particles

Particle Type	Threshold (KE)	Energy/momentum Resolution	Angular Resolution
μ±	30 MeV	Contained: from track length Exiting: 30 %	1°
π^{\pm}	100 MeV	MIP-like: from track length Contained π -like track: 5% Showering/Exiting: 30 %	1°
e⁺/γ	30 MeV	2% ⊕ 15 %/√(E/GeV)	1 °
р	50 MeV	p < 400 MeV: 10 % p > 400 MeV: 5% ⊕ 30%/√(E/GeV)	5°
n	50 MeV	440%/√(E/GeV)	5°
other	50 MeV	5% ⊕ 30%/√(E/GeV)	5°

*current assumptions to be addressed by FD Task Force

Evaluating DUNE Sensitivities III

Efficiencies & Energy Reconstruction

- Generate neutrino interactions using GENIE
- Fast MC smears response at generated final-state particle level
 - "Reconstructed" neutrino energy
 - kNN-based MV technique used for v_e "event selection", parameterized as efficiencies
- Used as inputs to GLoBES

Evaluating DUNE Sensitivities IV

Systematic Uncertainties

- Anticipated uncertainties based on MINOS/T2K experience
- Supported by preliminary fast simulation studies of ND

Source	MINOS	T2K	DUNE
	$ u_{e}$	${f v}_{{\sf e}}$	\mathbf{v}_{e}
Flux after N/F extrapolation	0.3 %	3.2 %	2 %
Interaction Model	2.7 %	5.3 %	~2 %
Energy Scale (v_{μ})	3.5 %	Inc. above	(2 %)
Energy Scale (v_e)	2.7 %	2 %	2 %
Fiducial Volume	2.4 %	1 %	1 %
Total	5.7 %	6.8 %	3.6 %

- DUNE goal for v_e appearance < 4 %
 - For sensitivities used: $5 \% \oplus 2 \%$
 - where 5 % is correlated with v_{μ} & 2 % is uncorrelated v_{e} only

